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We consider the problem of aggregating votes cast by a society on a �xed set of issues, where each member of

the society may vote for one of several positions on each issue, but the combination of votes on the various

issues is restricted to a set of feasible voting pa�erns. We require the aggregation to be supportive, i.e., for every

issue, the corresponding component of every aggregator, when applied to a tuple of votes, must take as value

one of the votes in that tuple. We prove that, in such a set-up, non-dictatorial aggregation of votes in a society

of an arbitrary size is possible if and only if a non-dictatorial binary aggregator exists or a non-dictatorial

ternary aggregator exists such that, for each issue, the corresponding component of the aggregator, when

restricted to two-element sets of votes, is a majority operation or a minority operation. We then introduce a

notion of a uniform non-dictatorial aggregator, which is an aggregator such that on every issue, and when

restricted to arbitrary two-element subsets of the votes for that issue, di�ers from all projection functions. We

�rst give a characterization of sets of feasible voting pa�erns that admit a uniform non-dictatorial aggregator.

A�er this and by making use of Bulatov’s dichotomy theorem for conservative constraint satisfaction problems,

we connect social choice theory with the computational complexity of constraint satisfaction by proving that

if a set of feasible voting pa�erns has a uniform non-dictatorial aggregator of some arity, then the multi-sorted

conservative constraint satisfaction problem on that set (with each issue representing a di�erent sort) is

solvable in polynomial time; otherwise, it is NP-complete.
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1 INTRODUCTION
Kenneth Arrow initiated the theory of aggregation by establishing his celebrated General Possibility

�eorem (also known as Arrow’s Impossibility �eorem) [1], which asserts that it is impossible,

even under mild conditions, to aggregate in a non-dictatorial way the preferences of a society.

Wilson [15] introduced aggregation on general a�ributes, rather than just preferences, and proved

Arrow’s result in this context. Later on, Dokow and Holzman [7] adopted a framework similar to

Wilson’s in which the voters have a binary position on a number of issues, and an individual voter’s
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feasible position pa�erns are restricted to lie in a domain X . Dokow and Holzman discovered

a necessary and su�cient condition for X to have a non-dictatorial aggregator that involves a

property called total blockedness, which was originally introduced in [9]. Roughly speaking, a

domain X is totally blocked if “any position on any issue can be deduced from any position on any

issue” (the precise de�nition is given in Section 3). In other words, total blockedness is a property

that refers to the propagation of individuals’ positions from one issue to another.

A�er this, Dokow and Holzman [8] extended their earlier work by allowing the positions to be

non-Boolean (non-binary). By generalizing the notion of a domain being totally blocked to the

non-Boolean framework, they gave a su�cient (but not necessary) condition for non-dictatorial

aggregation, namely, they showed that if a domain is not totally blocked, then it is a possibility

domain. Recently, Szegedy and Xu [13] discovered necessary and su�cient conditions for non-

dictatorial aggregation. �ite remarkably, their approach relates aggregation theory with universal

algebra, speci�cally with the structure of the space of polymorphisms, that is, functions under which

a relation is closed. It should be noted that properties of polymorphisms have been successfully used

towards the delineation of the boundary between tractability and intractability for the Constraint

Satisfaction Problem (for an overview, see, e.g., [6]).

Szegedy and Xu [13] distinguished the supportive (also known as conservative) case, where the

social position must be equal to the position of at least one individual, from the idempotent (also

known as Paretian) case, where the social position need not agree with any individual position,

unless the votes are unanimous. In the idempotent case, they gave a necessary and su�cient

condition for possibility of non-dictatorial aggregation that involves no propagation criterion

(such as the domain being totally blocked), but only refers to the possibility of non-dictatorial

aggregation for societies of a �xed cardinality (as large as the space of positions). In the supportive

case, however, their necessary and su�cient conditions still involve the notion of the domain being

totally blocked.

Here, we follow Szegedy and Xu’s idea of deploying the algebraic “toolkit” [13] and we prove that,

in the supportive case, non-dictatorial aggregation is possible for all societies of some cardinality if

and only if a non-dictatorial binary aggregator exists or a non-dictatorial ternary aggregator exists

such that on every issue j, the corresponding component fj is a majority operation, i.e., for all x
and y, it satis�es the equations

fj (x ,x ,y) = fj (x ,y,x ) = fj (y,x ,x ) = x

or fj is a minority operation, i.e., for all x and y, it satis�es the equations

fj (x ,x ,y) = fj (x ,y,x ) = fj (y,x ,x ) = y.

(For additional information about the notions of majority and minority operations, see Szendrei

[14, p. 24].)

We also show that a domain is totally blocked if and only if it admits no non-dictatorial binary

aggregator; thus, the notion of a domain being totally blocked is, in a precise sense, a weak form of

an impossibility domain.

A�er this. we introduce the notion of uniform non-dictatorial aggregator, which is an aggregator

that on every issue, and when restricted to an arbitrary two-element subset of the votes for that

issue, di�ers from all projection functions. We �rst give a characterization of sets of feasible

voting pa�erns that admit uniform non-dictatorial aggregators. �en, making use of Bulatov’s

dichotomy theorem for conservative constraint satisfaction problems (see [2–4]), we connect social

choice theory with the computational complexity of constraint satisfaction by proving that if a

set of feasible voting pa�erns X has a uniform non-dictatorial aggregator of some arity, then the
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multi-sorted conservative constraint satisfaction problem on X , in the sense introduced by Bulatov

and Jeavons [5], with each issue representing a sort, is tractable; otherwise it is NP-complete.

2 BASIC CONCEPTS AND EARLIER WORK
2.1 Basic Concepts
In all that follows, we have a �xed set I = {1, , . . . ,m} of issues. Let A = {A1, . . . ,Am } be a family

of �nite sets, each of cardinality at least 2, representing the possible positions (voting options) on

the issues 1, . . . ,m, respectively. If every Aj has cardinality exactly 2 (i.e., if for every issue only a

“yes” or “no” vote is allowed), we say that we are in the binary or the Boolean framework; otherwise,

we say that we are in the non-binary or the non-Boolean framework.

Let X be a non-empty subset of

∏m
j=1

Aj that represents the feasible voting pa�erns. We write

X j , j = 1 . . . ,m, to denote the j-th projection of X . From now on, we assume that each X j has

cardinality at least 2 (this is a non-degeneracy condition). �roughout the rest of the paper, unless

otherwise declared, X will denote a set of feasible voting pa�erns onm issues, as we just described.

Let n ≥ 2 be an integer representing the number of voters. �e elements of Xn
can be viewed as

n ×m matrices, whose rows correspond to voters and whose columns correspond to issues. We

write x ij to denote the entry of the matrix in row i and column j; clearly, it stands for the vote of

voter i on issue j. �e row vectors of such matrices will be denoted as x1, . . . ,xn , and the column

vectors as x1, . . . ,xm .

Let now
¯f = ( f1, . . . , fm ) be anm-tuple of n-ary functions fj : An

j 7→ Aj .

An m-tuple of functions
¯f = ( f1, . . . , fm ) as above is called supportive (conservative) if for all

j = 1 . . .m, we have that:

if x j = (x1

j , . . . ,x
n
j ) ∈ A

n
j , then fj (x j ) = fj (x

1

j , . . . ,x
n
j ) ∈ {x

1

j , . . . ,x
n
j }.

Anm-tuple
¯f = ( f1, . . . , fm ) of (n-ary) functions as above is called an (n-ary) aggregator for X if

it is supportive and, for all j = 1, . . . ,m and for all x j ∈ A
n
j , j = 1, . . . ,m, we have that:

if (x1, . . . ,xn ) ∈ Xn , then ( f1 (x1), . . . , fm (xm )) ∈ X .

Note that (x1, . . . ,xn ) is an n ×m matrix with rows x1, . . . ,xn and columns x1, . . . ,xm , whereas

( f1 (x1), . . . , fm (xm )) is a row vector required to be in X . �e fact that aggregators are de�ned as

m-tuples of functions An
j 7→ Aj , rather than a single function Xn 7→ X , re�ects the fact that the

social vote is assumed to be extracted issue-by-issue, i.e., the aggregate vote on each issue does not

depend on voting data on other issues.

An aggregator
¯f = ( f1, . . . , fm ) is called dictatorial on X if there is a number d ∈ {1, . . . ,n} such

that ( f1, . . . fm ) � X = (pr
n
d , . . . , pr

n
d ) � X , i.e., ( f1, . . . fm ) restricted to X is equal to (pr

n
d , . . . , pr

n
d )

restricted to X , where pr
n
d is the n-ary projection on the d-th coordinate; otherwise,

¯f is called

non-dictatorial on X . We say that X has a non-dictatorial aggregator if, for some n ≥ 2, there is a

non-dictatorial n-ary aggregator on X .

A set X of feasible voting pa�erns is called a possibility domain if it has a non-dictatorial

aggregator. Otherwise, it is called an impossibility domain. A possibility domain is, by de�nition,

one where aggregation is possible for societies of some cardinality, namely, the arity of the non-

dictatorial aggregator.

Aggregators do what their name indicates, that is, they aggregate positions on m issues, j =
1, . . . ,m, from data representing the voting pa�erns of n individuals on all issues. �e fact that

aggregators are assumed to be supportive (conservative) re�ects the restriction of our model that

the social vote for every issue should be equal to the vote cast on this issue by at least one individual.
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Finally, the requirement of non-dictatorialness for aggregators re�ects the fact that the aggregate

vote should not be extracted by adopting the vote of a single individual designated as a “dictator”.

Example 2.1. Suppose that X is a cartesian product X = Y × Z , where Y ⊆
∏l

j=1
Aj and

Z ⊆
∏m

j=l+1
Aj , with 1 ≤ l < m. It is easy to see that X is a possibility domain.

Indeed, for every n ≥ 2, the set X has non-dictatorial n-ary aggregators of the form

( f1, . . . , fl , fl+1, . . . , fm ), where for some d and d ′ with d , d ′, we have fj = pr
n
d , for j = 1, . . . , l ,

and also fj = pr
n
d ′ , for j = l + 1, . . . ,m. �us, every cartesian product of two sets of feasible pa�erns

is a possibility domain. �
Now, following Á. Szendrei [14, p. 24], we de�ne the notions of a majority operation and of a

minority operation.

De�nition 2.2. A ternary operation f : A3 7→ A on an arbitrary set A is a majority operation if

for all x and y in A,

f (x ,x ,y) = f (x ,y,x ) = f (y,x ,x ) = x ,

and it is a minority operation if for all x and y in A,

f (x ,x ,y) = f (x ,y,x ) = f (y,x ,x ) = y.

We also de�ne what it means for a set to admit a majority operation and a minority operation.

(Since the arity of an aggregator is the arity of its component functions, a ternary aggregator is an

aggregator with components of arity three.)

De�nition 2.3. Let X be a set of feasible voting pa�erns.

• X admits a majority aggregator if it admits a ternary aggregator
¯f = ( f1, . . . , fm ) such that

fj is a majority operation on X j , for all j = 1, . . . ,m.

• X admits a minority aggregator if it admits a ternary aggregator
¯f = ( f1, . . . , fm ) such that

fj is a minority operation on X j , for all j = 1, . . . ,m.

Clearly, X admits a majority aggregator if and only if there is a ternary aggregator
¯f =

( f1, . . . , fm ) for X such that, for all j = 1, . . . ,m and for all two-element subsets Bj ⊆ X j , we

have that fj� Bj = maj, where

maj(x ,y, z) =



x if x = y or x = z,

y if y = z.

Also,X admits a minority aggregator if and only if there is a ternary aggregator
¯f = ( f1, . . . , fm ) for

X such that, for all j = 1, . . . ,m and for all two-element subsets Bj ⊆ X j , we have that fj� Bj = ⊕,
where

⊕(x ,y, z) =




z if x = y,

x if y = z,

y if x = z.

It is known that in the Boolean framework (in which for all issues only “yes” or “no” votes are

allowed), a set X admits a majority aggregator if and only if X is a bijunctive logical relation, i.e., a

subset of {0, 1}m that is the set of satisfying assignments of a 2CNF-formula. Moreover, X admits a

minority aggregator if and only if X is an a�ne logical relation, i.e., a subset of {0, 1}m that is the

set of solutions of linear equations over the two-element �eld (see Schaefer [12]).

Example 2.4. �e set X = {(a,a,a), (b,b,b), (c, c, c ), (a,b,b), (b,a,a), (a,a, c ), (c, c,a)} admits a

majority aggregator.
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To see this, let
¯f = ( f , f , f ), where f : {a,b, c} → {a,b, c} is as follows:

f (u,v,w ) =



a if u, v , and w are pairwise di�erent;

maj(u,v,w ) otherwise.

Clearly, if B is a two-element subset of {a,b, c}, then f � B = maj. So, to show that X admits a

majority aggregator, it remains to show that
¯f = ( f , f , f ) is an aggregator for X . In turn, this

amounts to showing that
¯f is supportive and that X is closed under f . It is easy to check that

¯f
is supportive. To show that X is closed under f , let x = (x1,x2,x3),y = (y1,y2,y3), z = (z1, z2, z3)
be three elements of X . We have to show that ( f (x1,y1, z1), f (x2,y2, z2), f (x3,y3, z3)) is also in

X . �e only case that needs to be considered is when x , y, and z are pairwise distinct. Several

subcases need to be considered. For instance, if x = (a,b,b), y = (a,a, c ), z = (c, c,a), then

¯f (x ,y, z) = ( f (a,a, c ), f (b,a, c ), f (b, c,a)) = (a,a,a) ∈ X ; the remaining combinations are le� to

the reader. �

Example 2.5. �e set X = {(a,b, c ), (b,a,a), (c,a,a)} admits a minority aggregator.

To see this, let
¯f = ( f , f , f ), where f : {a,b, c} → {a,b, c} is as follows:

f (u,v,w ) =



a if u, v , and w are pairwise di�erent;

⊕(u,v,w ) otherwise.

Clearly, if B is a two-element subset of {a,b, c}, then f � B = ⊕. So, to show that X admits a

minority aggregator, it remains to show that
¯f = ( f , f , f ) is an aggregator for X . In turn, this

amounts to showing that
¯f is supportive and that X is closed under f . It is easy to check that

¯f is

supportive. To show that X is closed under f , let x = (x1,x2,x3),y = (y1,y2,y3), z = (z1, z2, z3) be

three elements of X . We have to show that ( f (x1,y1, z1), f (x2,y2, z2), f (x3,y3, z3)) is also in X . �e

only case that needs to be considered is when x , y, and z are distinct, say, x = (a,b, c ), y = (b,a,a),
z = (c,a,a). In this case, we have that ( f (a,b, c ), f (b,a,a), f (c,a,a)) = (a,b, c ) ∈ X ; Since f is not

a�ected by permutations of the input, the proof is complete. �
So far, we have given examples of possibility domains only. Next, we give an example of an

impossibility domain in the Boolean framework.

Example 2.6. LetW = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} be the 1-in-3 relation, i.e., the set of all Boolean

tuples of length 3 in which exactly one 1 occurs.

We claim thatW is an impossibility domain. It is not hard to show thatW is not a�ne and that

it does not admit a non-dictatorial binary aggregator. �eorem 3.7 in the next section implies that

W is an impossibility domain. �

Every logical relation X ⊆ {0, 1}m gives rise to a generalized satis�ability problem in the context

studied by Scheafer [12]. We point out that the property of X being a possibility domain in the

Boolean framework is not related to the tractability of the associated generalized satis�ability

problem. Concretely, the set W in Example 2.6 is an impossibility domain and its associated

generalized satis�ability problem is the NP-complete problem Positive 1-in-3-Sat. As discussed

earlier, the cartesian productW ×W is a possibility domain. Using the results in [12], however, it

can be veri�ed that the generalized satis�ability problem arising fromW ×W is NP-complete. At

the same time, the set {0, 1}m is trivially a possibility domain and gives rise to a trivially tractable

satis�ability problem. �us, the property of X being a possibility domain is not related to the

tractability of the generalized satis�ability problem arising from X .

Nonetheless, in Section 3 we establish the equivalence between the stronger notion of X being a

uniform possibility domain and the weaker notion of the tractability of the multi-sorted generalized
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satis�ability problem arising from X , where each issue is taken as a di�erent sort. Actually, we

establish this equivalence not only for satis�ability problems but also for constraint satisfaction

problems whose variables range over arbitrary �nite sets.

2.2 Earlier Work
�ere has been a signi�cant body of earlier work on possibility domains. Here, we summarize

some of the results that relate the notion of a possibility domain to the notion of a set being totally
blocked, a notion originally introduced in the context of the Boolean framework by Nehring and

Puppe [9]. As stated earlier, a set X of possible voting pa�erns is totally blocked if, intuitively, “any

position on any issue can be deduced from any position on any issue”; this intuition is formalized

by asserting that a certain directed graph GX associated with X is strongly connected. �e precise

de�nition of this notion is given in Section 3.

In the case of the Boolean framework, Dokow and Holzman [7] obtained the following necessary

and su�cient condition for a set to be a possibility domain.

Theorem A (Dokow and Holzman [7, Theorem 2.2]). Let X ⊆ {0, 1}m be a set of feasible voting
pa�erns. �e following statements are equivalent.

• X is a possibility domain.
• X is a�ne or X is not totally blocked.

For the non-Boolean framework, Dokow and Holzman [8] found the following connection

between the notions of totally blocked and possibility domain.

Theorem B (Dokow and Holzman [8, Theorem 2]). Let X be a set of feasible voting pa�erns.
If X is not totally blocked, then X is a possibility domain; in fact, there is a non-dictatorial n-ary
aggregator, for every n ≥ 2.

Note that, in the case of the Boolean framework, �eorem B was stated and proved as Claim 3.6

in [7].

For the non-Boolean framework, Szegedy and Xu [13] obtained a su�cient and necessary

condition for a totally blocked set X to be a possibility domain.

Theorem C (Szegedy and Xu [13, Theorem 8]). Let X be a set of feasible voting pa�erns that is
totally blocked. �e following statements are equivalent.

• X is a possibility domain.
• X admits a binary non-dictatorial aggregator or a ternary non-dictatorial aggregator.

Note that, in the case of the Boolean framework, �eorem C follows from the preceding �eorem

A (�eorem 2.2 in [7]).

A binary non-dictatorial aggregator can also be viewed as a ternary one, where one of the

arguments is ignored. By considering whether or not X is totally blocked, �eorems B and C imply

the following corollary, which characterizes possibility domains without involving the notion of

total blockedness; to the best of our knowledge, this result has not been explicitly stated previously.

Corollary 2.7. Let X be a set of feasible voting pa�erns. �e following statements are equivalent.

(1) X is a possibility domain.
(2) X has a non-dictatorial binary aggregator or a non-dictatorial ternary aggregator.
(3) X has a non-dictatorial ternary aggregator.
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3 CHARACTERIZATION OF POSSIBILITY DOMAINS
Our �rst result is a necessary and su�cient condition for a set of feasible voting pa�erns to be a

possibility domain.

Theorem 3.1. Let X be a set of feasible voting pa�erns. �e following statements are equivalent.

(1) X is a possibility domain.
(2) X has a non-dictatorial binary aggregator or it admits a majority aggregator or it admits a

minority aggregator.

�eorem 3.1 is stronger than the preceding Corollary 2.7 because, unlike Corollary 2.7, it gives

explicit information about the nature of the components fj of non-dictatorial ternary aggregators

¯f = ( f1, . . . , fm ), when the components are restricted to a two-element subset Bj ⊆ X j of the

set of positions on issue j, information that is necessary to relate results in aggregation theory

with complexity theoretic results (besides the three projections, there are 61 supportive ternary

functions on a two element set). Observe also that if
¯f = ( f1, . . . , fm ) is a binary aggregator, then

every component fj is necessarily a projection function or the function ∧ or the function ∨, when

restricted to a two-element subset Bj ⊆ X j (identi�ed with the set {0, 1}). So, for binary aggregators,

the information about the nature of their components is given gratis.
Only the direction 1 =⇒ 2 of �eorem 3.1 requires proof. Towards this goal, we �rst introduce a

new notion, that of monomorphic aggregators, and give three lemmas, which we then use to prove

�eorem 3.1.

Let X be a set of feasible voting pa�erns and let
¯f = ( f1, . . . , fm ) be an n-ary aggregator for X .

De�nition 3.2. We say that
¯f is locally monomorphic if for all indices i and j with 1 ≤ i, j ≤ m, for

all two-element subsets Bi ⊆ Xi and Bj ⊆ X j , for every bijection д : Bi 7→ Bj , and for all column

vectors xi = (x1

i , . . . ,x
n
i ) ∈ B

n
i , we have that

fj (д(x
1

i ), . . . ,д(x
n
i )) = д( fi (x

1

i , . . . ,x
n
i )).

Intuitively, the above de�nition says that, no ma�er how we identify the two elements of Bi
and Bj with 0 and 1, the restrictions fi� Bi and fj� Bj are equal as functions. Notice that in the

de�nition we are allowed to have i = j, which implies that if in a speci�c Bj we interchange the

values 0 and 1 in the arguments of fj� Bj , then the bit that gives the image of fj� Bj is �ipped.

It follows immediately from the de�nitions that if an aggregator is dictatorial, then it is locally

monomorphic. For binary aggregators, the converse is true. Indeed, assume that
¯f = ( f1, ..., fm ) is a

binary locally monomorphic aggregator for X . We claim that
¯f = ( f1, ..., fm ) is dictatorial on X . To

see this, �x a coordinate fi and consider a pair (a,b) ∈ X 2

i with a , b. By conservativeness, either

fi (a,b) = a or fi (a,b) = b. We claim that if fi (a,b) = a, then ( f1, . . . , fm ) � X = (pr
2

1
, . . . , pr

2

1
) � X ,

while if fi (a,b) = b, then ( f1, . . . , fm ) � X = (pr
2

2
, . . . , pr

2

2
) � X . To see this, consider a coordinate

fj and a pair (a′,b ′) ∈ X 2

j with a′ , b ′. Let д : {a,b} → {a′,b ′} be the bijection д(a) = a′ and

д(b) = b ′. Since
¯f = ( f1, ..., fm ) is locally monomorphic, we have that fj (a

′,b ′) = fj (д(a),д(b)) =
д( fi (a,b)) = д(a) = a′, hence ( f1, . . . , fm ) � X = (pr

2

1
, . . . , pr

2

1
) � X . �e case where fi (a,b) = b is

entirely analogous. As we shall see next, a ternary locally monomoprhic aggregator need not be

dictatorial. In fact, majority aggregators and minority aggregators are locally monomorphic, but,

of course, they are not dictatorial.

Example 3.3. Let X be a set of feasible voting pa�erns that admits a ternary aggregator
¯f =

( f1, ..., fm ) that is either a majority or a minority aggregator. �en
¯f = ( f1, ..., fm ) is locally

monomorphic.
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Indeed, suppose that
¯f = ( f1, ..., fm ) is a minority aggregator, i.e. for every j with 1 ≤ j ≤ m

and every two-element set Bj ⊆ X j , we have that fj �Bj= ⊕. Let i , j be such that 1 ≤ i, j, ≤ m, let

Bi = {a,b} ⊆ Xi , and let Bj = {c,d } ⊆ X j (we make no assumption for the relation, if any, between

a,b, c,d). �ere are exactly two bijections д and д′ from Bi to Bj , namely,

д(a) = c & д(b) = d

д′(a) = d & д′(b) = c

Suppose that (x ,y, z) is a triiple with x ,y, z ∈ Bi . Since |Bi | = |Bj | = 2, it holds that fi �Bi= ⊕ and

fj �Bj= ⊕. Without loss of generality, suppose that x = a,y = z = b. �en

fj (д(x ),д(y),д(z)) = fj (c,d,d )

= ⊕(c,d,d ) = c

= д(a) = д(⊕(a,b,b))

= д( fi (x ,y, z)).

An analogous statement holds for д′. Since i, j were arbitrary, we conclude that
¯f is locally

monomorphic.

�e proof for the case when
¯f is a majority aggregator is similar. �

We now present the �rst lemma needed in the proof of �eorem 3.1, which gives a su�cient

condition for all aggregators of all arities to be locally monomorphic.

Lemma 3.4. Let X be a set of feasible voting pa�erns. If every binary aggregator for X is dictatorial
on X , then, for every n ≥ 2, every n-ary aggregator for X is locally monomorphic.

Proof. Under the hypothesis that all binary aggregators are dictatorial, the conclusion is obvi-

ously true for binary aggregators. By induction, suppose that the conclusion is true for all (n−1)-ary

aggregators, where n ≥ 3. Consider an n-ary aggregator
¯f = ( f1, . . . , fm ) and a pair (Bi ,Bj ) of

two-element subsets Bi ⊆ Xi and Bj ⊆ X j . To render the notation less cumbersome, we will

take the liberty to denote the two elements of both Bi and Bj as 0 and 1. Assume now, towards a

contradiction, that there are a column-vector (a1, . . . ,an ) with ai ∈ {0, 1}, 1 ≤ i ≤ n, a “copy” of

this vector belonging to Bni , another copy belonging to Bnj , such that fi (a1, . . . ,a
n ) , fj (a

1, . . . ,an ).

Since n ≥ 3, by the pigeonhole principle applied to two holes and at least three pigeons, there is

a pair of coordinates of (a1, . . . ,an ) that coincide. Without loss of generality, assume that these

two coordinates are the two last ones, i.e., an−1 = an . We now de�ne an (n − 1)-ary aggregator

д̄ = (д1, . . . ,дm ) as follows: given n − 1 voting pa�erns (x i
1
, . . . ,x im ), i = 1, . . . ,n − 1, de�ne n

voting pa�erns by just repeating the last one and then for all k = 1, . . . ,m, de�ne

дk (x
1

k , . . . ,x
n−1

k ) = fk (x
1

k , . . . ,x
n−1

k ,x
n−1

k ).

It is straightforward to verify that д̄ is an (n−1)-ary aggregator onX that is not locally monomorphic,

which contradicts the inductive hypothesis. �

Remark 1. �e preceding argument generalizes to arbitrary cardinalities in the following way:

if every aggregator of arity at most s on X is dictatorial, then every aggregator on X is s-locally
monomorphic, meaning that for every k ≤ s and for all sets Bj ⊆ X j of cardinality k , the functions

fj� Bj are all equal up to bijections between the Bj ’s.

Next, we state a technical lemma whose proof was inspired by a proof in Dokow and Holzman

[8, Proposition 5].
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Lemma 3.5. Assume that for all integers n ≥ 2 and for every n-ary aggregator ¯f = ( f1, . . . , fm ),
there is an integer d ≤ n such that for every integer j ≤ m and every two-element subset Bj ⊆ X j ,
the restriction fj� Bj is equal to pr

n
d , the n-ary projection on the d-th coordinate. �en for all integers

n ≥ 2 and for every n-ary aggregator ¯f = ( f1, . . . , fm ) and for all s ≥ 2, there is an integer d ≤ n
such that for every integer j ≤ m and every subset Bj ⊆ X j of cardinality at most s , the restriction
fj� Bj is equal to pr

n
d .

Proof. �e proof will be given by induction on s . �e induction basis s = 2 is given by hypothesis.

Before delving into the inductive step of the proof and for the purpose of making the intuition

behind it clearer, let us mention the following fact whose proof is le� to the reader. �is fact

illustrates the idea for obtaining a non-dictatorial aggregator of lower arity from one of higher

arity.

Fact. Let A be a set and let f : A3 7→ A be a supportive function such that if among x1,x2,x3

at most two are di�erent, then f (x1,x2,x3) = x1. Assume also that there exist pairwise distinct

a1,a2,a3 such that f (a1,a2,a3) = a2; in the terminology of universal algebra, f is a semi-projection,

but not a projection. De�ne д(x1,x2) = f (x1, f (x1,x2,a3),a3). �en, by distinguishing cases as to

the value of f (x1,x2,a3), it is easy to verify that д is supportive; however, д is not a projection

function because д(a1,a2) = a2, whereas д(a1,a3) = a1.

For the inductive step of the proof of Lemma 3.5, we assume that for every n ≥ 2 and every

n-ary aggregator
¯f = ( f1, . . . ,m), there is a d ≤ n such that for every integer j ≤ m and every

subset Bj ⊆ X j with at most s − 1 elements, the restriction fj � Bj is equal to prnd . Fix such an n-ary

aggregator
¯f and �x an integer d , obtained by applying the induction hypothesis to s − 1 and

¯f .

Assume, without loss of generality that d = 1. We will show that for every j ≤ m and for every

subset Bj ⊆ X j of cardinality at most s , we have that fj� Bj = pr
n
1

, the n-ary projection function on

d = 1. We may assume that s ≤ n, lest the induction hypothesis applies.

Assume towards a contradiction that there exists an integer j0 ≤ m and row vectors a1, . . . ,an

in X such that the set Bj0 = {a
1

j0 , . . . ,a
n
j0 } has cardinality s and

fj0 (a
1

j0 , . . . ,a
n
j0 ) , a1

j0 . (1)

By supportiveness, there exists i0 ∈ {2, , . . . ,n} such that

fj0 (a
1

j0 , . . . ,a
n
j0 ) = ai0j0 . (2)

Let {k1, . . . ,ks } be a subset of {1, . . . ,n} of cardinality s such that the ak1

j0 , . . . ,a
ks
j0 are pairwise

distinct. Obviously, if i < {k1, . . . ,ks }, then there exists l ∈ {1, . . . , s} such that aij0 = aklj0 . So,

by renumbering we may assume that k1 = 1, . . . ,ks = s and i0 = 2. Recall that s ≥ 3. Let

B−j0 = {a
1

j0 , . . . ,a
s−1

j0 }. We de�ne an (s − 1)-ary aggregator
¯f − = ( f −

1
, . . . , f −m ) as follows: �rst for

j= 1, . . . ,m, we set:

yij =




x ij for i = 1, . . . , s − 1,

asj if i = s,

asj if i > s and aij0 = asj0 ,

x lj for the least l < s such that aij0 = alj0 , if i > s and aij0 , asj0 ,

(3)

then we set:

ŷij =



yij if yij , y
2

j ,

fj (y
1

j , . . . ,y
n
j ) otherwise,

(4)
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and �nally we de�ne:

f −j (x1

j , . . . ,x
s−1

j ) = fj (ŷ
1

j , . . . , ŷ
n
j ).

First observe that
¯f − is supportive. Indeed this follows from the observation that f −j can never take

the value asj . �en observe that
¯f − = ( f −

1
, . . . , f −m ) is an aggregator on X , because all row vectors

y1, . . . ,yn de�ned above belong to X (each is either some x i or some ai ).
It is obvious that

f −j0 (a
1

j0 , . . . ,a
s−1

j0 ) = fj0 (a
1

j0 , . . . ,a
n
j0 ) = a2

j0 .

Also, let x1

j0 , . . . ,x
s−1

j0 ∈ B−j0 be such that x1

j0 , x2

j0 and

2 ≤ |{x1

j0 , . . . ,x
s−1

j0 }| ≤ s − 2.

It is easy to see that for the corresponding ŷij0 , it holds that

2 ≤ |{ŷ1

j0 , . . . , ŷ
n
j0 }| ≤ s − 1.

It follows that

f −j0 (x
1

j0 , . . . ,x
s−1

j0 ) = fj0 (ŷ
1

j0 , . . . , ŷ
n
j0 ) = ŷ

1

j0 = x1

j0 , x2

j0 .

�erefore, f −j0 � B
−
j0 cannot be a projection function, which contradicts the inductive hypothesis

(assumed to hold for every
¯f ); this concludes the proof of Lemma 3.5.

�

Next, we bring into the picture some basic concepts and results from universal algebra; we refer

the reader to Szendrei’s monograph [14] for additional information and background. A clone on a

�nite set A is a set C of �nitary operations on A (i.e., functions from a �nite power of A to A) such

that C contains all projection functions and is closed under arbitrary compositions (superpositions).

�e proof of the next lemma is straightforward.

Lemma 3.6. Let X be a set of feasible voting pa�erns. For every j with 1 ≤ j ≤ m and every subset
Bj ⊆ X j , the set CBj of the restrictions fj� Bj of the j-th components of aggregators ¯f = ( f1, . . . , fm )
for X is a clone on Bj .

Post [11] classi�ed all clones on a two-element set (for more recent expositions of Post’s pioneer-

ing results, see, e.g., [14] or [10]). One of Post’s main �ndings is that if C is a clone of conservative

functions on a two-element set, then either C contains only projection functions or C contains one

of the following operations: the binary operation ∧, the binary operation ∨, the ternary operation

⊕, the ternary operation maj.

Using all of the above, we are now ready to prove �eorem 3.1.

Proof of �eorem 3.1. As stated earlier, only the direction 1 =⇒ 2 requires proof. In the con-

trapositive, we will prove that if X does not admit a majority or a minority aggregator, and it

does not admit a non-dictatorial binary aggregator, then X does not have an n-ary non-dictatorial

aggregator, for any n. Towards this goal, and assuming that X is as stated, we will �rst show that

the hypothesis of Lemma 3.5 holds. Once this is established, the conclusion will follow from Lemma

3.5 by taking s = max{|X j | : 1 ≤ j ≤ m}.

Given j ≤ m and a two-element subset Bj ⊆ X j , consider the clone CBj . If CBj contained

one of the binary operations ∧ or ∨, then X would have a binary non-dictatorial aggregator, a

contradiction. If, on the other hand, CBj contained the ternary operation ⊕ or the ternary operation

maj, then, by Lemma 3.4, X would admit a minority or a majority aggregator, a contradiction as

well. So, by the aforementioned Post’s result, all elements of CBj , no ma�er what their arity is, are
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projection functions. By Lemma 3.4 again, since X has no binary non-dictatorial aggregator, we

have that for every n and for every n-ary aggregator
¯f = ( f1, . . . , fm ), there exists an integer d ≤ n

such that for every j ≤ m and every two-element set Bj ⊆ X j , the restriction fj� Bj is equal to pr
n
d ,

the n-ary projection on the d-th coordinate. �is concludes the proof of �eorem 3.1. �
In the case of the Boolean framework, �eorem 3.1 takes the stronger form of �eorem 3.7 below.

Although this result for the Boolean framework is implicit in Dokow and Holzman [7], we give an

independent proof.

Theorem 3.7 (Dokow and Holzman). Let X ⊆ {0, 1}m be a set of feasible voting pa�erns. �e
following statements are equivalent.

(1) X is a possibility domain.
(2) X is a�ne (i.e., X admits a minority aggregator) or X has a non-dictatorial binary aggregator.

Proof. Only the direction 1 =⇒ 2 requires proof. Assume that X is a possibility domain in the

Boolean framework. By �eorem 3.1, X admits either a majority or a minority aggregator or X
has non-dictatorial binary aggregator. Since we are in the Boolean framework, this means that

X is a�ne or X is bijunctive or X has a non-dictatorial binary aggregator. If X has at most two

elements, then X is closed under ⊕, hence X is a�ne. So, it su�ces to show that if X is bijunctive

and has at least three elements, then X has a non-dictatorial binary aggregator. In turn, this follows

immediately from the following claim.

Claim 1. Let X be a bijunctive relation on {0, 1} with at least three elements. If X is not degenerate
(i.e., every X j has at least two elements), then X has a binary non-monomorphic aggregator.

To prove the above claim, �x an element ā = (a1, . . . ,am ) ∈ X . De�ne the following binary

aggregator, where x̄ = (x1, . . . ,xm ) and ȳ = (y1, . . . ,ym ) are arbitrary elements of X :

¯f ā (x̄ , ȳ) = (maj(x1,y1,a1), . . . ,maj(xm ,ym ,am )).

First, observe that
¯f ā is indeed an aggregator for X . Since X is closed under maj, all we have

to prove is that
¯f ā is supportive. But this is obvious, because, for j ≤ m, if x j = aj or yj = aj ,

then maj(x j ,yj ,aj ) = x j or maj(x j ,yj ,aj ) = yj . If x j , aj and yj , aj , then x j = yj , hence

maj(x j ,yj ,aj ) = x j = yj .
Now assuming that X contains more than two elements and is not degenerate, we will show

that there exists a row vector ā = (a1, . . . ,am ) ∈ X such that
¯f ā is not monomorphic, i.e., there are

distinct i, j = 1, . . . ,m such that
¯f āi ,

¯f āj , and thus the proof of the claim will be concluded.

Observe �rst that if for all distinct i ≤ m and j ≤ m one of the following (depending on i, j) were

true:

• for all vectors ū ∈ X , we have that ui = uj or

• for all vectors ū ∈ X , we have that ui , uj ,

then it would follow that there exist only two elements in X which at every coordinate have

complementary values, contradicting the hypothesis that X contains more than two elements.

�erefore, there exist two distinct integers i ≤ m and j ≤ m for which there are two elements

ū, v̄ ∈ X such that ui , uj and vi = vj . Combining the last statement with the non-degeneracy of

X , we conclude, by an easy case analysis, that there exist three elements ū, v̄, w̄ ∈ X such that at

least one of the following four cases holds:

(i) the i-th and j-th coordinates of ū, v̄, w̄ are (1, 0), (0, 1), (1, 1), respectively,

(ii) the i-th and j-th coordinates of ū, v̄, w̄ are (1, 0), (0, 1), (0, 0), respectively,

(iii) the i-th and j-th coordinates of ū, v̄, w̄ are (1, 0), (1, 1), (0, 0), respectively,

(iv) the i-th and j-th coordinates of ū, v̄, w̄ are (1, 0), (0, 1), (0, 0), respectively.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:12 Le�eris Kirousis, Phokion G. Kolaitis, and John Livieratos

In cases (i) and (ii), by computing the i-th and j-th coordinates of
¯f ū (ū, v̄ ) and

¯f ū (v̄, ū), we conclude

that
¯f ūi = ∨ and

¯f ūj = ∧, so
¯f ūi ,

¯f ūj . In case (iii), by computing the i-th and j-th coordinates of

¯f ū (v̄, w̄ ), we conclude that
¯f ūi ,

¯f ūj . Case (iv) is similar. �is completes the proof of Claim 1 and

of �eorem 3.7. �

4 CHARACTERIZATION OF TOTAL BLOCKEDNESS
As discussed in the preceding section, much of the earlier work on possibility domains used the

notion of a set being totally blocked. Our next result characterizes this notion in terms of binary

aggregators and, in many respects, “explains” the role of this notion in the earlier results about

possibility domains.

We begin by giving the precise de�nition of what it means for a set X of feasible voting pa�erns

to be totally blocked. We will follow closely the notation and terminology used by Dokow and

Holzman [8].

Let X be a set of feasible voting pa�erns.

• Given subsets Bj ⊆ X j , j = 1, . . . ,m, the product B =
∏m

j=1
Bj is called a sub-box. It is called

a 2-sub-box if |Bj | = 2, for all j.
Elements of a box B that belong also to X will be called feasible evaluations within B (in

the sense that each issue j = 1, . . . ,m is “evaluated” within B).

• Let K be a subset of {1, . . . ,m} and let x be a tuple in

∏
j ∈K Bj

We say that x is a feasible partial evaluation within B if there exists a feasible evaluation

y within B that extends x , i.e., x j = yj , for all j ∈ K ; otherwise, we say that x is an infeasible
partial evaluation within B.

We say that x is a B-Minimal Infeasible Partial Evaluation (B-MIPE) if x is an infeasible

partial evaluation within B and if for every j ∈ K , there is a bj ∈ Bj such that changing the

j-th coordinate of x to bj results into a feasible partial evaluation within B.

• We de�ne a directed graph GX as follows.

�e vertices of GX are the pairs of distinct elements u,u ′ in X j , for all j = 1, . . .m. Each

such vertex is denoted by uu ′j .

Two vertices uu ′k ,vv
′
l with k , l are connected by a directed edge from uu ′k to vv ′l if

there exists a 2-sub-box B =
∏m

j=1
Bj , a set K ⊆ {1, . . . ,m}, and a B-MIPE x = (x j )j ∈K such

that k, l ∈ K and Bk = {u,u
′} and Bl = {v,v

′} and xk = u and xl = v
′
. Each such directed

edge is denoted by uu ′k −→B,x,K
vv ′l (or just uu ′k → vv ′l , in case B,x ,K are understood from

the context).

Notice that uu ′k → vv ′l i� v ′vl → u ′uk .

• We say that X is totally blocked if the graph GX is strongly connected, i.e., every two

distinct vertices uu ′k ,vv
′
l are connected by a directed path (this must hold even if k = l).

�is notion, de�ned in Dokow and Holzman [8], is a generalization to the case where the

Aj ’s are allowed to have arbitrary cardinalities of a corresponding notion for the Boolean

framework (every Aj has cardinality 2), originally given in [9].

We are now ready to state the following result.

Theorem 4.1. Let X be a set of feasible voting pa�erns. �e following statements are equivalent.

(1) X is totally blocked.
(2) X has no non-dictatorial binary aggregator.
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Observe that �eorem 3.7 is also an immediate consequence of �eorem A and �eorem 4.1. In

view of �eorem B by Dokow and Holzman [8], only the direction 1 =⇒ 2 of �eorem 4.1 requires

proof. Nevertheless, we prove both directions of �eorem 4.1 for completeness.

Proof. We start with direction 1 =⇒ 2. Consider at �rst two vertices uu ′k ,vv
′
l ofGX (with k , l )

connected by an edge uu ′k → vv ′l . �en there exists a 2-sub-box B =
∏m

j=1
Bj with Bk = {u,u

′} and

Bl = {v,v
′} and a B-MIPE x = (x j )j ∈K such that {k, l } ⊆ K and xk = u,xl = v

′
.

Claim 2. For every binary aggregator ¯f = ( f1, . . . , fm ) of X , if fk (u,u ′) = u, then fl (v,v
′) = v .

Proof of Claim. By the minimality of x within B if we �ip xk from u to u ′ or if we �ip xl from v ′ to

v , then we get, in both cases, respective feasible evaluations within B. �erefore, there are two

total evaluations e and e ′ in X ∩ B such that

• ek = u
′

and

• es = xs for s ∈ K , s , k (in particular el = v
′
),

and

• e ′l = v and

• e ′s = xs for s ∈ K , s , l (in particular e ′k = u).

If we assume, towards a contradiction, that fk (u,u
′) = u and fl (v,v

′) = v ′, we immediately

have that the evaluation

¯f (e, e ′) := ( f1 (e1, e
′
1
), . . . , fm (em , e

′
m ))

extends (x j )j ∈K , contradicting the la�er’s infeasibility within B. �is completes the proof of the

Claim and we now return to the proof of �eorem 4.1.

From the Claim we get that if uu ′k →→ vv ′l and fk (u,u
′) = u, then fl (v,v

′) = v (even if

k = l), where uu ′k →→ vv ′l means that there is path from uu ′k to vv ′l in the graph GX . Also,

since by supportiveness fl (v,v
′) ∈ {v,v ′}, we have that if vv ′l →→ uu ′k and fk (u,u

′) = u ′, then

fl (v,v
′) = v ′. From this, it immediately follows that ifGX is strongly connected, then every binary

aggregator of X is dictatorial.

We will now prove Direction 2 =⇒ 1 of �eorem 4.1 , namely, that if X is not totally blocked,

then there is a non-dictatorial binary aggregator (this part is contained in [8, �eorem 2] –�eorem

B above). Since GX is not strongly connected, there is a partition of the vertices of GX into two

mutually disjoint and non-empty subsets V1 and V2 so that there is no edge from a vertex of V1

towards a vertex in V2. We now de�ne a
¯f = ( f1, . . . , fm ), where fk : A2

k 7→ Ak , as follows:

fk (u,u
′) =




u if u,u ′ ∈ Xk and uu ′k ∈ V1 and u , u ′,

u ′ if u,u ′ ∈ Xk and if uu ′k ∈ V2 and u , u ′,

u if u = u ′ or u ∈ Ak \ Xk or u ′ ∈ Ak \ Xk .

(5)

In other words, for two di�ering values u and u ′ in Xk , the function fk is de�ned as the projection

on the �rst coordinate if uu ′k ∈ V1, and as the projection onto the second coordinate if uu ′k ∈ V2; we

also de�ne fk (u,u) = u if u = u ′ or if either u or u ′ is not in Xk (i.e., when at least one of them is

not a projection onto the k-th coordinate of an element of X , in this la�er case the value of fk (u,u
′)

can be arbitrarily de�ned, as it has no e�ect on the properties of
¯f ).

Notice that
¯f is non-dictatorial, because V1 and V2 are not empty.

All that remains to be shown is thatX is closed under
¯f , i.e., if e = (e1, . . . , em ), e ′ = (e ′

1
, . . . , e ′m ) ∈

X are two total feasible evaluations, then

¯f (e, e ′) := ( f1 (e1, e
′
1
), . . . fm (em , e

′
m )) ∈ X . (6)
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Let

L = {j = 1, . . . ,m | ej , e ′j }.

For an arbitrary j ∈ L, de�ne vertexj (e, e
′) to be the vertex uu ′j of GX , where u = ej and u ′ = e ′j .

If now
¯f (e, e ′) = e or if

¯f (e, e ′) = e ′, then obviously (6) is satis�ed. So assume that

¯f (e, e ′) , e and
¯f (e, e ′) , e ′. (7)

Also, towards showing (6) by contradiction, assume

¯f (e, e ′) < X . (8)

De�ne now a 2-sub-box B = (Bj )j=1, ...,m as follows:

Bj =



{ej , e
′
j } if ej , e ′j ,

{ej ,aj } otherwise ,
(9)

where aj is an arbitrary element , ej of X j (the la�er choice is only made to ensure that |Bj | = 2 in

all cases).

Because of (8) and (9), we have that
¯f (e, e ′) is a total evaluation infeasible within B. Towards

constructing a B-MIPE, delete one a�er the other (and as far as it can go) coordinates of
¯f (e, e ′),

while taking care not to destroy infeasibility within B. LetK ⊆ {1, . . . ,m} be the subset of coordinate

indices that remain at the end of this process. �en the partial evaluation

x :=
(
fj (ej , e

′
j )
)
j ∈K

(10)

is infeasible within B. �erefore, lest e or e ′ extends x =
(
fj (ej , e

′
j )
)
j ∈K

(not permissible because

the la�er partial evaluation is infeasible), there exist k, l ∈ K such that

ek , e ′k and el , e ′l (11)

and also

fk (ek , e
′
k ) = ek and fl (el , e

′
l ) = e ′l . (12)

But then if we set

u = ek ,u
′ = e ′k ,v = el ,v

′ = e ′l , (13)

we have, by (5), (11), (12) and (13), that

vertexk (e, e
′) = uu ′k ∈ V1 and vertexl (e, e

′) = vv ′l ∈ V2 (14)

and, by (5), (12) and (13), we get that

uu ′k −→B,x,K
vv ′l

which by (14) is a contradiction, because we get an edge from V1 to V2. �is completes the proof of

�eorem 4.1. �

Before proceeding further, we point out that the three types of non-dictatorial aggregators in

�eorem 3.1 are, in a precise sense, independent of each other.

Example 4.2. Consider the set X = {0, 1}3 \ {(1, 1, 0)} of satisfying assignments of the Horn clause

(¬x ∨ ¬y ∨ z).
It is easy to see that X is closed under the binary operation ∧, but it is not closed under the

ternary majority operation maj or the ternary minority operation ⊕.

�us, X is a possibility domain admi�ing a non-dictatorial binary aggregator, but not a majority

aggregator or a minority aggregator. �
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Example 4.3. Consider the setX = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)} of solutions of the equation

x + y + z = 1 over the two-element �eld.

It is easy to see that X is closed under the ternary minority operation ⊕, but it is not closed under

the ternary majority operation maj. Moreover, Dokow and Holzman [7, Example 3] pointed out

that X is totally blocked, hence �eorem 4.1 implies that X does not admit a non-dictatorial binary

aggregator.

�us, X is a possibility domain admi�ing a minority aggregator, but not a majority aggregator

or a non-dictatorial binary aggregator. �

Example 4.4. Consider the set X = {(0, 1, 2), (1, 2, 0), (2, 0, 1), (0, 0, 0)}.
�is set was studied in [8, Example 4]. It can be shown that X admits a majority aggregator. To

see this, consider the ternary operator f = ( f1, f2, f3) such that fj (x ,y, z) is the majority of x , y, z,

if at least two of the three values are equal, or it is 0 otherwise. Notice that in the la�er case the

value 0 must be one of the x , y, z, so this operator is indeed supportive. It is easy to verify that X is

closed under ( f1, f2, f3). Moreover, if one of the fj ’s is restricted to a two-element domain (i.e., to

one of {0, 1}, {(1, 2)}, {0, 2}), then it must be the majority function by its de�nition, so f is indeed a

majority aggregator on X .

Dokow and Holzman argued that X is totally blocked, hence �eorem 4.1 implies that X does

not admit a non-dictatorial binary aggregator.

Next, we claim that X does not admit a minority aggregator. Towards a contradiction, assume it

admits the minority aggregator д = (д1,д2,д3). By applying д to the triples (0, 1, 2), (1, 2, 0), (0, 0, 0)
in X , we infer that the triple (д1 (0, 1, 0), (д2 (1, 2, 0), д3 (2, 0, 0)) must be in X . By the assumption

that this aggregator is the minority operator on two-element domains, we have that д1 (0, 1, 0) = 1

and д3 (2, 0, 0) = 2, so X contains a triple of the form (1,д2 (1, 2, 0), 2); however, X contains no triple

whose �rst coordinate is 1 and its third coordinate is 2, so we have arrived at a contradiction.

�us, X is a possibility domain admi�ing a majority aggregator, but not a minority aggregator

or a non-dictatorial binary aggregator. �

Observe that the possibility domains in Examples 4.2 and 4.3 are in the Boolean framework,

while the possibility domain in Example 4.4 is not. �is is no accident, because it turns out that, in

the Boolean framework, if a set admits a majority aggregator, then it also admits a non-dictatorial

binary aggregator. �is property is shown as a Claim in the proof of �eorem 3.7. Note also that

this explains why admi�ing a majority aggregator is not part of the characterization of possibility

domains in the Boolean framework in �eorem 3.7.

5 UNIFORM POSSIBILITY DOMAINS
In this Section, we connect aggregation theory with multi-sorted constraint satisfaction problems.

Towards this goal, we introduce the following stronger notion of a non-dictatorial aggregator.

De�nition 5.1. Let X be a set of feasible voting pa�erns.

• We say that an aggregator f = ( f1, . . . , fm ) for X is uniform non-dictatorial if for every

j = 1, . . . ,m and every two-element subset Bj ⊆ X j , we have that fj� Bj is not a projection

function.

• We say that X is a uniform possibility domain if X admits a uniform non-dictatorial aggre-

gator of some arity.

�e next example shows that the notion of a uniform possibility domain is stricter than the

notion of a possibility domain.
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Example 5.2. LetW = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} be the 1-in-3 relation, considered in Example

2.6. As seen earlier, the cartesian productW ×W is a possibility domain. We claim thatW ×W is

not a uniform possibility domain in the sense of De�nition 5.1. Indeed, sinceW is an impossibility

domain, it follows easily that for every n, all n-ary aggregators ofW ×W are of the form

(prnd ,pr
n
d ,pr

n
d ,pr

n
d ′,pr

n
d ′,pr

n
d ′ ), for d,d ′ ∈ {1, . . . ,n}. �

It is obvious that every set X that admits a majority aggregator or a minority aggregator is a

uniform possibility domain. �e next example states that uniform possibility domains are closed

under cartesian products.

Example 5.3. If X and Y are uniform possibility domains, then so is their cartesian product X ×Y .

Assume that X ⊆
∏l

j=1
Aj and Z ⊆

∏m
j=l+1

Aj , where 1 ≤ l < m. Let ( f1, . . . , fl ) be a uniform

non-dictatorial aggregator for X and let ( fl+1 . . . , fm ) be a uniform non-dictatorial aggregator for

X . �en

( f1, . . . , fl , fl+1, . . . , fm )

is a uniform non-dictatorial aggregator for X × Y . �

Let B be an arbitrary two-element set, viewed as the set {0, 1}, and consider the binary logical

operations ∧ and ∨ on B (since we will always deal with both these logical operations concurrently,

it does not ma�er which element of B we take as 0 and which as 1). For notational convenience.

we de�ne two ternary operations on B as follows:

∧(3) (x ,y, z) = x ∧ y ∧ z and ∨(3) (x ,y, z) = x ∨ y ∨ z.

We now �rst state and subsequently prove the following result.

Theorem 5.4. Let X be a set of feasible voting pa�erns. �e following statements are equivalent.

(1) X is a uniform possibility domain.
(2) For every j = 1, . . . ,m and for every two-element subset Bj ⊆ X j , there is an aggregator

¯f = ( f1, . . . , fm ) (that depends on j and Bj ) of some arity such that fj� Bj is not a projection
function.

(3) �ere is a ternary aggregator ¯f = ( f1, . . . , fm ) such that for all j = 1, . . . ,m and all two-
element subsets Bj ⊆ X j , we have that fj� Bj is one of the ternary operations ∧(3) , ∨(3) , maj,
⊕ (to which of these four ternary operations the restriction fj� Bj is equal to depends on j and
Bj ).

(4) �ere is a ternary aggregator ¯f = ( f1, . . . , fm ) such that for all j = 1, . . . ,m and all x ,y ∈ X j ,
we have that fj (x ,y,y) = fj (y,x ,y) = fj (y,y,x ).

Before the proof of �eorem 5.4, we give several preliminaries.

We start with the following lemma:

Lemma 5.5 (Superposition of aggregators). Let ¯f = ( f1, . . . , fm ) be an n-ary aggregator and
let

h1 = (h1

1
, . . . ,h1

m ), . . . ,hn = (hn
1
, . . . ,hnm )

be n k-ary aggregators (all onm issues). �en them-tuple of k-ary functions (д1, . . . ,дm ) de�ned by:

дj (x1, . . . ,xk ) = fj (h
1

j (x1, . . . ,xk ), . . . ,h
n
j (x1, . . . ,xk )), j = 1, . . . ,m

is also an aggregator.
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Proof. Let x lj , l = 1, . . . ,k, j = 1, . . . ,m be a k ×m matrix whose rows are in X . Since the

hi , i = 1, . . . ,n are k-ary aggregators, we conclude that for all i = 1, . . . ,n,

(hi
1
(x1

1
, . . . ,xk

1
), . . . ,him (x1

m , . . . ,x
k
m )) ∈ X .

We now apply the aggregator
¯f = ( f1, . . . , fm ) to the n ×m matrix

hij (x
1

j , . . . ,x
k
j ), i = 1, . . . ,n, j = 1, . . . ,m,

which concludes the proof. �

Using the above lemma we will assume below, o�en tacitly, that various tuples of functions

obtained by superposition of aggregators with other aggregators, like projections, are aggregators

as well.

We now prove three lemmas:

Lemma 5.6. Let A be an arbitrary set and f : A3 7→ A a ternary supportive operation on A, and B a
two-element subset of A taken as {0, 1}. �en f �B is commutative i� f �B ∈ {∧(3),∨(3),maj, ⊕}.

Proof. Only the su�ciency of commutativity of f �B for its being one of ∧(3),∨(3) , maj, ⊕ is

not entirely trivial. Since f is supportive, f (0, 0, 0) = 0 and f (1, 1, 1) = 1. Assume f �{0, 1} is

commutative. Let

f (1, 0, 0) = f (0, 1, 0) = f (0, 0, 1) := a, and

f (0, 1, 1) = f (1, 0, 1) = f (1, 1, 0) := b .

By supportiveness, a,b ∈ {0, 1}. If a = b = 0, then f = ∧(3) ; if a = b = 1, f = ∨(3) ; if a = 0 and

b = 1, f = maj; and if a = 1 and b = 0, f = ⊕. �

Lemma 5.7. Let A be an arbitrary set and f ,д : A3 7→ A two ternary supportive operations on A.
De�ne the supportive as well ternary operation

h(x ,y, z) = f (д(x ,y, z),д(y, z,x ),д(z,x ,y)).

If B is a two-element subset of A then h�B is commutative if either f �B or д�B is commutative.

Proof. �e result is entirely trivial if д�B is commutative, since in this case, by supportiveness

of f , h�B = д�B. If on the other hand f �B is commutative then easily from the de�nition of h
follows that for any x ,y, z ∈ B, h(x ,y, z) = h(y, z,x ) = h(z,x ,y).�is form of superposition of f
and д appears also in Bulatov [4, Section 4.3]. �

For notational convenience, we introduce the following de�nition:

De�nition 5.8. Let
¯f and д̄ be two aggregators on X . Let

¯f � д̄ be the ternary aggregator

¯h = (h1, . . . ,hm ) de�ned by:

hj (x ,y, z) = fj (дj (x ,y, z),дj (y, z,x ),дj (z,x ,y)), j = 1, . . . ,m,

(�e fact that
¯h is indeed an aggregator follows from Lemma 5.5 and the fact that a tuple of functions

comprised of the same projections is an aggregator.)

Lemma 5.9. Let ¯f and д̄ be two aggregators on X . Let i, j ∈ {1, . . . ,m} two arbitrary issues
(perhaps identical) and Bi ,Bj two two-element subsets of Xi and X j , respectively. If fi�Bi and дj�Bj
are commutative (i.e., by Lemma 5.6 if each is one of the ∧(3),∨(3) , maj, ⊕) then both ¯f � д̄�Bi and
¯f � д̄�Bj are commutative (i.e., each is one of the ∧(3),∨(3) , maj, ⊕).

Proof. Immediate by Lemmas 5.6 and 5.7. �
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We now prove the characterization of uniform possibility domains. Some of the techniques

employed in the proof of �eorem 5.4 and the preceding lemmas had been used by Bulatov (see [3,

Proposition 3.1] [4, Proposition 2.2]; these results however consider only operations of arity two or

three.)
9

Proof of �eorem 5.4.
�e directions (1) =⇒ (2) and (3) =⇒ (1) are obvious. Also the equivalence of (3) and

(4) immediately follows from Lemma 5.6. It remains to show (2) =⇒ (3). For a two-element

subset Bj ⊆ X j , let CBj be the clone (Lemma 3.6) of the restrictions fj� Bj of the j-th components of

aggregators
¯f = ( f1, . . . , fm ). By Post [11], we can easily get that CBj contains one of the operations

∧,∨,maj and ⊕. �erefore, easily, for all j,Bj there is a ternary aggregator
¯f = ( f1, . . . , fm )

(depending on j,Bj ) such that fj�Bj is one of the ∧(3),∨(3),maj and ⊕. Now let
¯f 1, . . . , ¯f N be an

arbitrary enumeration of all ternary aggregators each of which on some issue j and some two-

element Bj is one of the ∧(3),∨(3),maj and ⊕ and such that the
¯f l ’s cover all possibilities for j,Bj .

As a ternary operation
¯h such that uniformly for each j,Bj , the restriction hj�Bj belongs to the set

{∧(3),∨(3),maj, ⊕} we can take, by Lemma 5.9,

(· · · ( ¯f 1 � ¯f 2) � · · · � ¯f N ),

which concludes the proof. �
To state our result that connects the property of X being a uniform possibility domain with the

property of tractability of a multi-sorted constraint satisfaction problems, we �rst introduce some

notions following closely [5] and [3].

As before, we consider a �xed set I = {1, , . . . ,m}, but this time I represents sorts. We also

consider a family A = {A1, . . . ,Am } of �nite sets, each of cardinality at least 2, representing the

values the corresponding sorts can take.

• Let (i1, . . . , ik ) be a list of (not necessarily distinct) indices from I . A multi-sorted relation
overA with arity k and signature (i1, . . . , ik ) is a subset R of Ai1 × · · · ×Aik , together with

the list (i1, . . . , ik ). �e signature of such a multi-sorted language R will be denoted σ (R).
• A multi-sorted constraint language Γ over A is a set of multi-sorted relations over A.

De�nition 5.10 (Multi-sorted CSP). Let Γ be a multi-sorted constraint language over a family

A = {A1, . . . ,Am } of �nite sets. �e multi-sorted constraint satisfaction problem MCSP(Γ ) is the

following decision problem.

An instance of MCSP(Γ ) is a quadruple (V ,A,δ ,C), where V is a �nite set of variables; δ is a

mapping from V to I , called the sort-assignment function (v belongs to the sort δ (v )); C is a set

of constraints where each constraint C ∈ C is a pair (s,R), such that s = (v1, ...,vk ) is a tuple of

variables of length k , called the constraint scope; R is a k-ary multi-sorted relation over A with

signature (δ (v1), ...,δ (vk )), called the constraint relation.

�e question is whether a value-assignment exists, i.e., a mapping ϕ : V 7→
⋃m

i=1
Ai , such that,

for each variable v ∈ V , we have that ϕ (v ) ∈ Aδ (v ) , and for each constraint (s,R) ∈ C, with

s = (v1, ...,vk ), we have that the tuple (ϕ (v1), ...,ϕ (vk )) belongs to R.

A multi-sorted constraint language Γ over A is called conservative if for all sets Aj ∈ A and all

subsets B ⊆ Aj , we have that B ∈ Γ (as a relation over Aj ).

If X ⊆
∏m

j=1
Aj is a set of feasible voting pa�erns, then X can be considered as multi-sorted

relation with signature (1, . . . ,m) (one sort for each issue). We write Γ cons

X to denote the multi-

sorted conservative constraint language consisting of X and all subsets of every Aj , j = 1, . . . ,m,

the la�er considered as relations over Aj .

9
�is came to the a�ention of the authors only a�er the work reported here had been essentially completed.
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If the sets Aj are equal to each other and |I | = 1, i.e., if there is no di�erentiation between sorts,

then MCSP(Γ ) is denoted the constraint satisfaction problem CSP(Γ ). If the sets of votes for all

issues are equal, then it is possible to consider a feasible set of votes X as a one-sorted relation

(all issues are of the same sort). In this framework, and in case all Aj ’s are equal to {0, 1}, we

have that CSP(Γ cons

X ) coincides with the problem introduced by Schaefer [12], which he called

the “generalized satis�ability problem with constants” and denoted by SATC ({X }). Note that the

presence of the sets {0} and {1} in the constraint language amounts to allowing constants, besides

variables, in the constraints.

Schaefer [12] proved a prototypical dichotomy theorem for the complexity of the generalized

satis�ability problem with constants. Bulatov [3, �eorem 2.16] proved a dichotomy theorem for

conservative multi-sorted constraint languages, which in our se�ing reads:

Dichotomy Theorem (Bulatov). If for any j = 1, . . . ,m and any two-element subset Bj ⊆ X j
there is either a binary aggregator

¯f = ( f1, . . . , fm ) such that
¯fj�Bj ∈ {∧,∨} or a ternary aggregator

¯f = ( f1, . . . , fm ) such that
¯fj�Bj ∈ {maj, ⊕}, then MCSP(Γ cons

X ) is solvable in polynomial time;

otherwise it is NP-complete.

We now state the following dichotomy theorem.

Theorem 5.11. If X is a uniform possibility domain, then MCSP(Γ cons

X ) is solvable in polynomial
time; otherwise it is NP-complete.

Proof. �e tractability part of the statement follows from Bulatov’s Dichotomy �eorem and

item (3) of �eorem 5.4 (observing that x ∧ y = ∧(3) (x ,x ,y) and similarly for ∨ and using Lemma

5.5), whereas the completeness part follows from Bulatov’s Dichotomy �eorem and item (2) of

�eorem 5.4. �

We end this section with the following example:

Example 5.12. Let Y = {0, 1}3 \ {(1, 1, 0)} be the set of satisfying assignments of the clause

(¬x ∨ ¬y ∨ z) and let Z = {(1, 1, 0), (0, 1, 1), (1, 0, 1), (0, 0, 0)} be the set of solutions of the equation

x + y + z = 0 over the two-element �eld.

We claim that Y and Z are uniform possibility domains, hence, by Example 5.3, the cartesian

product X = Y × Z is also a uniform possibility domain. From �eorem 5.11, it follows that

MCSP(Γ cons

X ) is solvable in polynomial time. However, the generalized satis�ability problem with

constants SATC ({X }) (equivalently CSP(Γ cons

X )) is NP-complete.

Indeed, in Schaefer’s [12] terminology, the set Y is Horn (equivalently, it is coordinate-wise

closed under ∧); however, it is not dual Horn (equivalently, it is not coordinate-wise closed under

∨), nor a�ne (equivalently, it does not admit a minority aggregator) nor bijunctive (equivalently, it

does not admit a majority aggregator). �erefore, by coordinate-wise closure under ∧, we have

that Y is a uniform possibility domain. Also, Z is a�ne, but not Horn, nor dual Horn neither

bijunctive. So, being a�ne, Z is a uniform possibility domain. �e NP-completeness of SATC ({X })
(equivalently, the NP-completeness of CSP(Γ cons

X )) follows from Schaefer’s dichotomy theorem [12],

because X is not Horn, dual Horn, a�ne, nor bijunctive. �

6 CONCLUDING REMARKS
In this paper, we used algebraic tools to investigate the structural properties of possibility domains,

that is, domains that admit non-dictatorial aggregators. We also established a connection between

the stronger notion of a uniform possibility domain and multi-sorted constraint satisfaction. We

conclude by discussing two algorithmic problems that underlie the notions of a possibility domain

and a uniform possibility domain.
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Given a family A = {A1, . . . ,Am } and a subset X ⊆
∏m

j=1
Aj as input, adopting a terminology

used in computational complexity theory, we call meta-problems the following two questions:

(i) Is X a possibility domain?

(ii) Is X a uniform possibility domain?

�eorem 3.1 (in fact, even Corollary 2.7) and, respectively, �eorem 5.4, easily imply that the

meta-problem (i) and, respectively, the meta-problem (ii), is in NP. Indeed, we only have to guess

suitable ternary or binary operations and check for closure. However, even if the sizes of all Aj ’s

are bounded by a constant (but the number m of issues/sorts, is unbounded), it is conceivable

that the problems are not in polynomial time, as there are exponentially many ternary or binary

aggregators. �e question of pinpointing the exact complexity of these two meta-problems is the

object of ongoing research. Of course, if, besides the cardinality of all sets Aj , their numberm is

also bounded, then �eorem 3.1 (in fact, even Corollary 2.7) and respectively, �eorem 5.4 imply

that the meta-problem (i) and, respectively, the meta-problem (ii)) is solvable in polynomial time

(for the �rst meta-problem, this was essentially observed by Szegedy and Xu [13]). Note that, in the

preceding considerations, it is assumed thatX is given by listing explicitly its elements. IfX is given

implicitly in a succinct way (e.g., as the set of satisfying assignments of a given Boolean formula),

then the upper bound for the meta-problems is higher. �e exact complexity of the aforementioned

meta-problems with X represented succinctly remains to be investigated.
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