Presentation for 15 April 2021 Social Choice Theory Berwin Gan

The Impossibility Theorem, when $m \ge$ 3, there is nt a SWF that satisfy all four

- Unrestricted domain (U)
- Pareto Principle (P)
- Non-dictatorship (ND)
- Independence of Irrelevant Alternatives (IIA)

Using the plurality rule

<u>Scenario 1</u>

1		-
25%	35%	
Rubio	Kasich	Results: Trump ≻ Kasich
Kasich	Trump	\mathbb{R}
Trump	Rubio	
2		_
25%	35%	
Kasich	Kasich	Results: Kasich ≻ Trump
Trump	Trump	
Rubio	Rubio	
	Rubio Kasich Trump 2 25% Kasich Trump	RubioKasichKasichTrumpTrumpRubio235%KasichKasichTrumpTrump

Rubio acts as a siphon/spoiler

Social preference between two alternatives *x* and *y* should depend only on individuals preference between *x* and *y*, and not on preferences concerning some third alternative.

- stronger than need to prevent spoilers
- \cdot sensitivity to preference intensities impossible

Under Borda count where a candidate gets m points for every 1st rank, m - 1 points for every 2nd rank, etc.

Scenari 45%	o A 55%		
Х	У	Social Ranking: $x \succ y \succ z$	
Z	Х		
У	Z		
Scenari 45%		_	
Х	У	Social Ranking: $y \succ x \succ z$	
У	Х		
Z	Z		

Small gap vs Big gap (Sensitivity)

Given alternatives x and y and two profiles

- each individual ranks x and y the same way in both profiles
- each individual ranks the same set of alternatives between x and y in both profiles

Then the social ranking of x and y must be the same.

m=2 Majority rule is best. Satisfy:

- Anonymity (A)
- Neutrality (N)
- Positive Responsiveness (PR)

Alternative *x* is socially preferred to *y* if and only if *x*'s Borda score is bigger.

An alternative gets m points every time an individual ranks it first, m - 1 points every time an individual ranks it second, etc

Only Borda count - U,P,ND, MIIA,A,N and PR

When |X| = 2, May's theorem = Borda count.

Let $X = \{x, y, z\}$ For profile \succ . $a_{xy}(\succ) - (x \succ y \succ z)$ or $(z \succ x \succ y)$ $a_{yx}(\succ) - (z \succ y \succ x)$ or $(y \succ x \succ z)$

For $I_3^F(a_{xy}, a_{yx})$ be proportion a_{xzy} If $a_{yzx}(\succ) = 1 - a_{xy} - a_{yx} - I_3^F(a_{xy}, a_{yx})$, then $x \sim_F y$, where $\succeq_F = F(\succ)$ I_3^F Social Indifference Curve Fractions does not affect the social ranking of x and y

$$a_{xy}(\succ) - (x \succ y \succ z) \text{ or } (z \succ x \succ y)$$

Actual division does not matter

 $I_3^F(a_{xy}, a_{yx})$ is unique.

Two values: a_{xzy} and a'_{xzy} with $a_{xzy} < a'_{xzy}$

From $(a_{xy}, a_{yz}, a_{xzy}, 1 - a_{xy} - a_{yz} - a_{xzy})$ to $(a_{xy}, a_{yz}, a'_{xzy}, 1 - a_{xy} - a_{yz} - a'_{xzy})$ means x is rising and y is falling in individual rankings.

 $x \sim_F y$ for both is not possible.

$$I_{3}^{B}(a_{xy}, a_{yx}) = (2 - 3a_{xy} - a_{yx})/4$$
(1)

$$I_3^F = I_3^B \tag{2}$$

$$I_{3}^{F}(a_{xy}, a_{yx}) = B_{0} + B_{xy}a_{xy} + B_{yx}a_{yx}, \text{ for constant } B_{0}, B_{xy}, B_{yx}$$
 (3)

$$I_3^F(a,a) = 1 - 2a - I_3^F(a,a)$$
 if $a_{xy} = a_{yx} = a$ (4)

$$2I_{3}^{F}(a,a) = 2B_{0} + 2(B_{xy} + B_{yx})a = 1 - 2a(3) \text{ into } (4)$$
(5)

For a under a certain size, (5) holds and we can infer

$$B_0 = \frac{1}{2}$$
 (6)
 $B_{xy} + B_{yx} = -1$ (7)