Presentation for 8 April 2021 Social Choice Theory Berwin Gan

Assume that for all integers $n \ge 2$ and for every n-ary aggregator $\overline{f} = (f_1, ..., f_m)$, there is an integer $d \le n$ such that for every integer $j \le m$ and every two-element subset $B_j \subseteq X_j$. the restriction $f_j|B_j$ is equal to pr_d^n , the n-ary projection on the d-th coordinate.

Then for all integers $n \ge 2$ and for every n-aary aggregator $\overline{f} = (f_1, ..., f_m)$ and for all $s \ge 2$, there is an integer $d \le n$ such that for every integer $j \le m$ and every subset $B_j \subseteq X_j$ of cardinality at most s, the restriction $f_j|B_j$ is equal to pr_d^n .

	m1	m2	
n1	а	a	
n2	b	b	
n3	С	С	
n4	a	a	

Let $f_1(a, b, c, a) = b$ and $f_2(a, b, c, a) = c$.

If among x_1, x_2, x_3, x_4 at most two are different then $f(x_1, x_2, x_3, x_4) = x_1$

```
Set g(x_1, x_2) = f(x_1, f(x_1, x_2, c, x_1), c, x_1)
```

```
g_1(a, b) = f_1(a, f_1(a, b, c, a), c, a)

g_1(a, b) = f_1(a, b, c, a)

g_1(a, b) = b
```

```
g_{2}(a,b) = f_{2}(a,f_{2}(a,b,c,a),c,a)

g_{2}(a,b) = f_{2}(a,c,c,a)

g_{2}(a,b) = a
```

	m1	m2		
n1	а	a		
n2	b	b b		
n3	C C			
n4	a	a a		
n5	a a			

Let $f_1(a, b, c, a, a) = b$ and $f_2(a, b, c, a, a) = c$.

If among x_1, x_2, x_3, x_4, x_5 at most two are different then $f(x_1, x_2, x_3, x_4, x_5) = x_1$

Set
$$g(x_1, x_2) = f(x_1, f(x_1, x_2, c, x_1, x_1), c, x_1, x_1)$$

```
g_1(a, b) = f_1(a, f_1(a, b, c, a, a), c, a, a)

g_1(a, b) = f_1(a, b, c, a, a)

g_1(a, b) = b
```

```
g_2(a,b) = f_2(a, f_2(a, b, c, a, a), c, a, a)

g_2(a,b) = f_2(a, c, c, a, a)

g_2(a,b) = a
```

	m1	m2		
n1	а	a		
n2	b b			
n3	СС			
n4	d d			
n5	a a			

Let $f_1(a, b, c, d, a) = b$ and $f_2(a, b, c, d, a) = c$.

If among x_1, x_2, x_3, x_4, x_5 at most three are different then $f(x_1, x_2, x_3, x_4, x_5) = x_1$

Set
$$g(x_1, x_2, x_3) = f(x_1, f(x_1, x_2, x_3, d, x_1), x_3, d, x_1)$$

$$g_1(a, b, c) = f_1(a, f_1(a, b, c, d, a), c, d, a)$$

$$g_1(a, b, c) = f_1(a, b, c, d, a)$$

$$g_1(a, b, c) = b$$

$$g_2(a, b, c) = f_2(a, f_2(a, b, c, d, a), c, d, a)$$

$$g_2(a, b, c) = f_2(a, c, c, d, a)$$

$$g_2(a, b, c) = a$$

	m1	m2	m3
n1	a	a	a
n2	b	b	b
n3	С	С	С
n4	d	d	d
n5	a	a	a

Let $f_1(a, b, c, d, a) = b$, $f_2(a, b, c, d, a) = c$ and $f_3(a, b, c, d, a) = a$. If among x_1, x_2, x_3, x_4, x_5 at most three are different then $f(x_1, x_2, x_3, x_4, x_5) = x_1$

Set
$$g(x_1, x_2, x_3) = f(x_1, f(x_1, x_2, x_3, d, x_1), x_3, d, x_1)$$

$$g_1(a, b, c) = f_1(a, f_1(a, b, c, d, a), c, d, a)$$

$$g_1(a, b, c) = f_1(a, b, c, d, a)$$

$$g_1(a, b, c) = b$$

$$g_2(a, b, c) = f_2(a, f_2(a, b, c, d, a), c, d, a)$$

$$g_2(a, b, c) = f_2(a, c, c, d, a)$$

$$g_2(a, b, c) = a$$

$$g_3(a, b, c) = f_3(a, f_3(a, b, c, d, a), c, d, a)$$

$$g_3(a, b, c) = f_3(a, a, c, d, a)$$

$$g_3(a, b, c) = a$$