Presentation for 17 March 2021 Social Choice Theory Berwin Gan

Theorem

Let X be a set of feasible voting patterns.

- X is a possibility domain.
- X admits non-dictatorial binary aggregator or a majority aggregator or minority aggregator.

When restricted to two-element subset.

- \cdot projection
- $\cdot \ \land \ \mathsf{function}$
- $\cdot ~ \lor ~ \mathsf{function}$

Definition

A function \overline{f} is monomorphic if for all $1 \le i, j \le m$ and for all two-element subset $B_i \subseteq X_i$ and $B_j \subseteq X_i$ and every bijection $g: B_i \mapsto B_j$ and all column vector $x_i = (x_i^1, ..., x_i^n) \in B_i^n$

$$f_j(g(x_i^1), ..., g(x_i^n) = g(f_i(x_i^1, ..., x_i^n))$$

VISUAL AID

Let X be a set of feasible voting patterns that admits a minority or majority ternary aggregator \overline{f} . Then \overline{f} is locally monomorphic.

Proof.

Let \overline{f} be a minority ternary aggregator. For every $1 \le i, j \le m$, let $B_i = \{a, b\} \subseteq X_i$ and $B_j = \{c, d\} \subseteq X_i$

g(a) = cg(b) = dg'(a) = dg'(b) = c

EXAMPLE 3.3 CONTINUE

Proof.

Let (x, y, z) be a triple in $x, y, z \in B_i$. Without loss of generality, let x = a, y = z = b.

 $f_{j}(g(x), g(y), g(z))$ $\Leftrightarrow f_{j}(c, d, d)$ $\Leftrightarrow \bigoplus (c, d, d)$ $\Leftrightarrow c$ $\Leftrightarrow g(a) = g(\bigoplus (a, b, b))$ $\Leftrightarrow g(f_{i}(x, y, z))$

The same holds for g'. Since i, j were arbitrary, \overline{f} is locally monomorphic.

Let X be the set of feasible voting patterns. If every binary aggregator for X is dictatorial, then for every $n \ge 2$, every n-ary aggregator for X is locally monomorphic.

Proof.

The conclusion is true for binary aggregator

For induction, suppose the conclusion is true for all (n-1)-ary aggregator, where $n \ge 3$.

Consider an n-ary aggregator $\overline{f} = (f_1, ..., f_m)$ and pair of two-element subsets (B_i, B_j) where $B_i \subseteq X_i$ and $B_j \subseteq X_i$. T

Proof.

Let there be a column-vector $(a^1, ..., a^n)$ with $a^i \in \{0, 1\}$ with copies in B_i and B_j where $f_i(a^1, ..., a^n) \neq f_i(a^1, ..., a^n)$ As $n \ge 3$, by the pigeonhole principle, there is at least two position with the same element. Let these be the last two $a^n = a^{n-1}$. We then define a (n-1)-ary aggregator $\overline{g} = (g_1, ..., g_m)$ as follows: given n - 1 voting patterns $(x_1^i, ..., x_m^i), i = 1, ..., n - 1$, define n voting patterns by repeating the last one

Proof.

Then for all k = 1, ..., m define

$$g_k(x_k^1, ..., x^{n-1}) = f_k(x_k^1, ..., x^{n-1}, x^{n-1})$$

This shows that the (n-1)-ary aggregator is not locally monomorphic, which create a contradiction.

For $n \ge 2$, every n-ary aggregator $\overline{f} = (f_1, ..., f_m)$, there is an integer $d \le n$ such that every integer $j \le m$ and every two-element subset $B_j \subseteq X$, the restriction $f_i|B_j$ is equal to pr_d^n , the n-ary projection on the d-th coordinate.

For $n \ge 2$, and every n-ary aggregator $\overline{f} = (f_1, ..., f_m)$ and for all $s \ge 2$, there is an integer $d \le n$ such that every integer $j \le m$ and every subset $B_j \subseteq X_j$ of cardinality of at most s, the restriction $f_i|B_j$ is equal to pr_d^n

The induction basis for s = 2 is given.

For the inductive step, let $s \ge 3$ and assume the lemma is true for s - 1 where $f_j|B_j = pr_d^n$. Without loss of generality, we fix d = 1 for the projection. We also assume $s \le n$.

Towards a contradiction, let there exists $j_0 \le m$ and row vector $a^1, ..., a^n$ in X where $B_{j_0} = \{a_{j_0}^1, ..., a_{j_0}^n\}$ has cardinality s and

 $f_{j_0}(a_{j_0}^1,...,a_{j_0}^n) \neq a_{j_0}^1$

By supportiveness, there exists $i_0 \in \{2, ..., n\}$ where

 $f_{j_0}(a_{j_0}^1,...,a_{j_0}^n) \neq a_{j_0}^{i_0}$

Without loss of generality, we fix $i_0 = 2$

Let $\{k_1, ..., k_s\}$ be a subset of $\{1, ..., n\}$ of cardinality s such that $\{a_{j_0}^{k_1}, ..., a_{j_0}^{k_2}\}$ are pairwise distinct. If $i \notin \{k_1, ..., k_s\}$, then there is $l \in \{1, ..., s\}$ such that $a_{j_0}^i = a_{j_0}^{k_l}$ We then renumber $\{k_1, ..., k_s\}$ to $\{1, ..., s\}$.

Let
$$B_{j_0}^- = \{a_{j_0}^1, ..., a_{j_0}^{s-1}\}$$
. We define an $(s - 1)$ -ary aggregator $\overline{f}^- = (f_1^-, ..., f_m^-)$ for $j = 1, ..., m$ and $(x_j^1, ..., x_j^{s-1}) \in X_j^{s-1}$.
We then define $(y_n^1, ..., y_j^n) \in X_j^n$ as:

$$y_{j}^{i} = \begin{cases} x_{j}^{i} & \text{for } i = 1, ..., s - 1 \\ a_{j}^{s} & \text{if } i = s \\ a_{j}^{s} & \text{if } i > s \text{ and } a_{j_{0}}^{i} = a_{j_{0}}^{s} \\ x_{j}^{l} & \text{for the least } l < s \text{ such that } a_{j_{0}}^{i} = a_{j_{0}}^{l}, \text{ if } i > s \text{ and } a_{j_{0}}^{i} \neq a_{j_{0}}^{s} \end{cases}$$