Presentation for 2 March 2021 Social Choice Theory Berwin Gan

- *m* issues
- *n* voters
- A_j is the possible positions of for issue j
- Domain $X \subseteq \prod_{j=1}^{m} A_j$

- \bar{x} is an element of $(\prod_{j=1}^{m} A_j)^n$
- xⁱ_j
- *n*-ary aggregator $F: (\prod_{j=1}^{m} A_j)^n \mapsto \prod_{j=1}^{m} A_j$
- *n* = 2 or *n* = 2
- Closed Domain: if $\bar{x} \in X^n$, then $F(\bar{x}) \in X$

Aggregator satisfy IIA

There exist functions $f_1, ..., f_m$ such that $f_i : A_j^n \mapsto A_j$ and $F(\bar{x}) = (f_1(x_1), ..., f_m(x_m))$

Systematicity: $f_1 = f_2 = \ldots = f_m$

- $I = \{1, ..., m\}$
- · $\mathcal{A} = \{A_1, ..., A_m\}$ with cardinality at least 2
- Boolean Framework
- $X_j \subseteq \prod_{j=1}^m A_j$

- *n*-ary aggregator $F: (\prod_{j=1}^{m} A_j)^n \mapsto \prod_{j=1}^{m} A_j$
- Closed Domain: if $\bar{x} \in X^n$, then $F(\bar{x}) \in X$
- F is dictatorial if $\exists d \in \{1, ..., n\} \ni \forall (\bar{x} \in X^n | F(\bar{x}) = x^d)$
- Possibility Domain: \exists a non-dictatorial aggregator of arity n

Anonymous: every $\bar{x}, \bar{y} \in X^n$ such that $y^1, ..., y^n$ are a permutation of $x^1, ..., x^n$, then $F(\bar{x}) = F(\bar{y})$

Systematicity: $f_1 = f_2 = \ldots = f_m$

Independence: There exist functions $f_1, ..., f_m$ such that $f_i : A_j^n \mapsto A_j$ and $F(\bar{x}) = (f_1(x_1), ..., f_m(x_m))$ Supportive: for every $\bar{x} \in X^n$, $f_i(x_j) \in \{x_j^1, ..., x_j^n\}$

Paretian: if every $\bar{x} \in X^n$ and every j = 1, ..., m if $x_j^1 = ... = x_j^n$ then $f_j(x_j) = x_j^1 = ... = x_j^n$

 $f: A^3 \mapsto A$ Majority Operation

$$f(x, x, y) = f(x, y, x) = f(y, x, x) = x$$

Minority Operation

$$f(x, x, y) = f(x, y, x) = f(y, x, x) = y$$

Admits Ternary Aggregator: if there is a ternary aggregator $\overline{f} = (f_1, ..., f_m)$ for all X

n

$$maj(x, y, z) = \begin{cases} x & \text{if } x=y \text{ or } x=z \\ y & \text{if } y=z \end{cases}$$
$$min(x, y, z) = \begin{cases} z & \text{if } x=y \\ x & \text{if } y=z \\ y & \text{if } x=z \end{cases}$$

X admits a minority aggregator if and only if X is an affine logical relations, a subset of $\{0,1\}^m$ that is the set of solutions of linear equations over the two-element field.

Set $X = \{(a, a, a), (b, b, b), (c, c, c), (a, b, b), (b, a, a), (a, a, c), (c, c, a)\}$ admits a majority aggregator.

$$maj(u, v, w) = \begin{cases} a & \text{if } u, v, w \text{ are pairwise different} \\ maj(u, v, w) & \text{otherwise} \end{cases}$$
$$x = (a, b, b) \ y = (a, a, c) \ z = (c, c, a)$$
$$\text{Then } \overline{f}(x, y, z) = (f(a, a, c), f(b, a, c), f(b, c, a)) = (a, a, a) \in X$$

Set $X = \{(a, b, c), (b, a, a), (c, a, a)\}$ admits minority aggregator $min(u, v, w) = \begin{cases} a & \text{if } u, v, w \text{ are pairwise different} \\ min(u, v, w) & \text{otherwise} \end{cases}$

x = (a, b, c) y = (b, a, a) z = (c, a, a)Then $\overline{f}(x, y, z) = (f(a, b, c), f(b, a, a), f(c, a, a)) = (a, b, c) \in X$

Set $W = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ is an impossibility domain.

Check using majority and minority aggregator..

- X is a possibility domain
- X admits a non-dictatorial ternary aggregator