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FRAMEWORK OF PROBLEM

• Let there be a set [n] := {1, ..,n} of n ∈ N voters and a set
A := {a1, ...,am} of m ∈ N candidates.

• Each voter i ∈ [n] casts a linear ordering over A with ≻i such that
ab1 ≻i ab2 ≻i ... ≻i abm where ab1 ≻i ab2... ≻i abm is a
permutation of {a1, ...,am}. In each linear ordering, abk is said to
have rank k.

• A combination of linear ordering is called a profile, P. An
preference aggregation rule is a function that assigns to each
profile a social preference relation on A.
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SCORE VECTOR

• A scoring vector for m candidates is given by (s1, s2, ..., sm) where
for each vote, the ith ranked candidate is given the ith score in
the vector.

• Eg. The first ranked candidate in a vote is given s1 score and the
last ranked candidate is given sm score.
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SCORE VECTOR RULE

• The total score of an alternative can be obtained by summing the
score the alternative obtained from every vote.

• The social preference relation is then determined based on the
score of the alternatives with the alternative with the highest
score being the most preferred and the alternative with the
lowest score being the least preferred.
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EQUIVALENCE OF TWO SCORE VECTORS

• Score vectors with m entries where any two successive scores
differ by the same amount is defined by
(A+ (m− 1)b,A+ (m− 2)b, ...A+ 2b,A+ b,A) where b > 0.

• Given a linear ordering, the alternatives with rank k will be given a
score of A+ (m− k)b.

• The social preference relation will be determined by the total
scores of each candidate in descending order.
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EQUIVALENCE OF TWO SCORE VECTORS: CLAIM

Claim: Any two score vectors with m entries where any two
successive scores differ by the same amount generates equivalent
social preference relation for any amount of voters.
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EQUIVALENCE OF TWO SCORE VECTOR: PROOF

Proof.
Let the two score vectors be defined by (A+ (m− 1)b, ...,A+ b,A)
and (C+ (m− 1)d, ..., C+ d, C) where b > 0 and d > 0. As the term A
is in every element of the first vector, the final score for all
alternatives given n voters will be nA+ xb with x varying. Hence, we
can simplified the vector to ((m− 1)b, ...,b, 0) and obtain the same
social preference relation as every alternative score will be reduced
by the same amount,nA. Similarly, the second vector can be
simplified to ((m− 1)d, ...,d, 0)

7



EQUIVALENCE OF TWO SCORE VECTOR: PROOF

Proof.
Given that both scoring vectors differ only by their multiples of b
and d. They will generate the same social preference relation as
b > 0 and d > 0. Furthermore, the scores obtained from the first
vector is d

b the scores obtained from the second vector.
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SYMMETRIC BORDA RULE

The symmetric Borda score of an alternative ap is calculated by:

BordasymP (ap) :=
∑

aq∈A/{ap}

NetP(ap > aq)

The net preference for ap over aq is defined as:

NetP(ap,aq) := |{i ∈ [n]|ap ≻i aq}| − |{i ∈ [n]|ap ≻i aq}|
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PROPOSITION 1

Claim: The social preference relation obtain from the symmetric
Borda rule is equivalent to the social preference relation obtain from
the scoring vector of (m− 1,m− 3, ...,−(m− 3),−(m− 1))
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POPOSITION 1 (1)

Using the definition of net preference we can show that:

BordasymP (ap) =
∑

aq∈A/{ap}

NetP(ap > aq) (1)

=
m∑
q=1

(
|{i ∈ [n]|ap ≻i aq}| − |{i ∈ [n]|ap ≻i aq}|

)
(2)
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POPOSITION 1 (2)

By expanding the summation over both sides of the equation we get:

BordasymP (ap) =
m∑
q=1

(
|{i ∈ [n]|ap ≻i aq}| − |{i ∈ [n]|ap ≻i aq}|

)
(3)

=
m∑
q=1

(|{i ∈ [n]|ap ≻i aq}|)−
m∑
q=1

(|{i ∈ [n]|ap ≻i aq}|)

(4)
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PROPOSITION 1 (3)

BordasymP (ap) =
m∑
q=1

(|{i ∈ [n]|ap ≻i aq}|)−
m∑
q=1

(|{i ∈ [n]|ap ≻i aq}|)

(5)

=
n∑
i=1

(|{q ∈ A|ap ≻i aq}|)−
n∑
i=1

(|{q ∈ A|ap ≻i aq}|) (6)

To get from (5) to (6) we must represent the the left summation of
both equations of the preference of alternative ap towards other
alternatives aq in a matrix.
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PROPOSITION 1 (4)

S =



s1,1 s1,2 ... s1,m
s2,1 s2,2 ... s2,m
. . . .

. . . .

. . . .

sn,1 sn,2 ... sn,m


• We can represent the left summation with a matrix S with

elements si,j where i = 1, ...,n representing the voters and
j = 1, ...,m representing the alternatives a1,a2, ...,am.

• Each element is 1 if the corresponding voter i votes ap > aq for the
corresponding candidate aq where q = j and q ̸= p and 0
otherwise.
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PROPOSITION 1(5)

• The left summation of equation (5) sums the ones over the rows
while going over alternatives from j = 1 to j = m.

• On the other hand, the left summation of equation (6) sums the
ones over the columns while going over each voter from i = 1 to
i = n.

• As the sum value will be similar for both cases the two equations
are equivalent.
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PROPOSITION 1 (6)

• Similarly, the right summation can be thought of an equivalent
matrix with 1 in the matrix element corresponding to aq > ap
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PROPOSITION 1 (7)

When a candidate is ranked in the kth position where k = 1, ...,m,
where are k− 1 candidate above and m− k candidate below, hence:

BordasymP (ap) =
n∑
i=1

(|{q ∈ A|ap ≻i aq}|)−
n∑
i=1

(|{q ∈ A|ap ≻i aq}|) (7)

=
n∑
i=1

(m− ki)−
n∑
i=1

(ki − 1) (8)
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PROPOSITION 1 (8)

We can further simplify the equation by combining to summation to:

BordasymP (ap) =
n∑
i=1

(m− ki)−
n∑
i=1

(ki − 1) (9)

=
n∑
i=1

(m− (2ki − 1)) (10)
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PROPOSITION 1 (9)

According go the symmetric Borda rule defintion of:

BordasymP (ap) =
n∑
i=1

(m− (2ki − 1))

The alternative in rank k will have a score of m− 2k+ 1 which is
equal to the scoring vector of

(m− 1,m− 3, ...,−(m− 3),−(m− 1))

when k = 1, ...,m.
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