Presentation for 27 April 2021 Social Choice Theory Berwin Gan

Positional Voting Rules - Ranked Voting Electoral System

Use Ranked Ballot

- anonymous
- value of first preference > value of last preference
- value of n^{th} preference \geq value of $n + 1^{\text{th}}$ preference

Harmonic Progression: $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}$...

Nauru System: $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}...$

Points for position in rank(n) Weights: $w_n = a - (n - 1)$ where a=N

Rank	Points
1	5
2	4
3	3
4	2
5	1

Plurality Voting: The most preferred option receives 1 point; all other options receive 0 points.

Rank	Points	Profile 1 B∼ C	
A	1		
В	0		
С	0		
Rank	Points		
Rank B	Points 1	- Drofilo 2 Ry C	
Rank B C	Points 1 0	Profile 2 B≻ C	

Anti-Plurality Voting: Least preferred receives 0 points, everyone else receives 1 point.

Rank	Points	Profile 1 B≻ C	
A	1		
В	1		
С	0		
Rank	Points		
Rank B	Points 1	- Drofilo 2 R. C	
Rank B C	Points 1 1	Profile 2 B~ C	

- anonymous
- value of first preference > value of last preference
- value of n^{th} preference \geq value of $n + 1^{\text{th}}$ preference
- value of n^{th} preference > value of $n + 1^{\text{th}}$ preference

The first preference receives *a* points, the second receives $\frac{a}{2}$, and so on.

Points	1 Voter	1 Voter	
8	А	С	Drofilo 1 C P
4	В	В	Prome I C> D
2	С	А	_
Points	1 Voter	1 Voter	
8	A	A	Drofilo 2 C P
/			Profile 2 C \sim D
4	В	C	

Only Borda count satisfy Unrestricted Domain (U), Anonymity (A), Neutrality(N), Positive Responsiveness (PR) and Modified Independence of Irrelevant Alternatives (MIIA) Trivial that PST satisfy U, A and N.

Positive Responsiveness requires that if alternative *x* rises relative to *y* in some individuals' preference ordering, then

- \cdot x doesn't fall relative to y in the social orderings
- if x and y were previously tied socially, x is now strictly above.

Points	1 Voter	1 Voter	
1	А	A	Profilo 1 Bay C
0	В	В	Profile I b~ C
0	С	С	
Points	1 Voter	1 Voter	
1	А	A	Drofilo 2 D C
0	В	С	Profile 2 D~ C
_			

Assume a PSR where given two adjacent rank position, the lower one is receives strictly lower amount of points than the higher one.

Value per n^{th} rank: $p - x_n$ where $x_i < x_{i+1}$ for all i > 1

When alternative x rises relative to y: $p - x_j$ to $p - x_k$ where $(p - x_j) < (p - x_k)$

No more ties if was tied before.

- Borda Count n, n 1, n 2, ..., 1
- Nauru Method 1, $\frac{1}{1-d}$, $\frac{1}{1-2d}$, ...
- Harmonic Progression 1, $\frac{1}{2}$, $\frac{1}{3}$

Given alternatives x and y and two profiles

- each individual ranks x and y the same way in both profiles
- each individual ranks the **same set of alternatives** between *x* and *y* in both profiles

Then the social ranking of *x* and *y* must be the same.

Change 2nd statement to general form

 each individual have the same number of alternatives between x and y

SWF F satisfies U, A, N, PR and NMIIA if and only if F is the Borda Count.

Arithmetic Progression

٠

The case for when the Borda Count satisfy all 5 criteria is straightforward.

Let there be a profile 1 with 5 alternatives. Let everyone vote $a_1 \succ x \succ a_2 \succ a_3 \succ y$.

For profile 2, everyone votes the same except 1 voter who votes $a_2 \succ x \succ a_1 \succ a_3 \succ y$

For profile 3, everyone votes the same as profile 1 except 1 voter who votes $x \succ a_1 \succ a_2 \succ y \succ a_3$

How the number of alternatives between *x* and *y* can be linked to the Nauru system or other system.