Approximations for Covering in a Streaming Setting,
Covering with Orthants

Berwin Gan
Computer Science, NYUAD
wqg203@nyu.edu

Advised by: Saurabh Ray

ABSTRACT

In this paper, we looked at two problems of covering in differ-
ent settings. Firstly,we consider the problem of the unit disc
covering and its variations for a streaming setting, in which,
given a set of streaming points, the goal is to approximate the
minimum number of unit discs needed to cover all incoming
points without storing information on all points. We first
give a 2-approximations algorithm for the thin annulus vari-
ation on the UDC problem. After that, we give an algorithm
with a factor of 1.5 for the interval covering variation when
the optimal number of covering is exactly two. Following
that, we give a construction to show a lower bound of 1.5
for the square variation of the UDC problem. Lastly, we give
a two approximation algorithm for the half-space variation
when there exist a hitting set of size 1.

We then consider the problem of covering with orthants.
We first show that any case can be reduced to the general
case of a monotonic subset then perform further analysis on
the general case. Our first construction show a way to create
arbitrarily long single connections by using two intermediary
points. We then show that clique creation using a single type
of orthant is equal to the planar graph and is impossible
past 4 points. Lastly, we show that restricting the number of
intermediary points to 0 or 1 to create cliques of arbitrarily
large size is impossible.
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1 INTRODUCTION

Approximation schemes are algorithms that approximate
an answers when finding the exact solution would be unde-
sirable. Computation and memory limitation are the main
reason approximation schemes are favour over an exact algo-
rithm. These approximation algorithms are used to approxi-
mate solutions to optimizations problem. In practical terms,
these optimization problems could translate into operation
research such as finding the optimal area to place critical
infrastructure such as hospitals in a city. The static view
aside, the place where approximation schemes truly shine is
in a streaming setting. The idea behind this combination is
to find an approximate solution without storing all incoming
information which in a streaming setting will be dynamic
and random.

Before applications can be made using approximation al-
gorithms, we must first understand the bound of these al-
gorithms, namely where the limits of these algorithms are.
As approximations schemes do not give an exact solution
by nature, the most important thing to take away from any
approximation schemes is how much bigger the solution
given is compared to the actual solution. The two terms of
importance here are the upper bound and the lower bound.
The upper bound of an approximation scheme tell us how
much bigger the approximated solution is when compared
to the actual solution. For example, if the upper bound for
a particular algorithm is 4, it means that the ratio of the
approximated solution to the actual solution will be 4 in
the worst case. Research working on the upper bound of an
approximation scheme would try to come up algorithms that
approximate more accurately in the worst case scenario. The
lower bound on the other hand tells us the lowest ratio of ap-
proximation to actual solution we can theoretically achieve.
What the lower bound tells us is that no mater what clever
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schemes are made, no approximation to actual solution ratio
can be less the the lower bound if some information is loss.

The general question posed would be "What is the min-
imum number of unit disc it would take to cover all the
points?" given a stream of points onto a plane. Hence, this
paper tackles the upper and lower bound of this question for
the UDC in 2D and its variations.

For the second problem, instead of using closed shapes
such as discs and squares, we looked at using orthants to
cover points in a classical non-streaming setting. We work
towards showing that creating cliques of arbitrary large size
using orthants is impossible. If a proof for showing that a
clique of arbitrarily large size can be found, then the Local
Search algorithm by [6] would be considered as optimal due
to the absence of a large minor.

2 RELATED WORK

The three papers which most work was built on for the prob-
lem of covering in a streaming setting are Approximation
Schemes for Covering and Packing Problems in Image Pro-
cessing and VLSI [3] by Dorit S. Hochbaum and Wolfgang
Maass, Approximation Schemes for Covering and Packing in
the Streaming Model [4] by Christopher Liaw, Paul Liu and
Robert Reiss and Interval Selection in the Streaming Model [1]
by Sergio Cabello and Pablo Pérez-Lantero.

The first paper deals with square packing, covering with
discs and covering with squares or rectangles. For the pur-
pose of this paper, the result in focus would be the shifting
strategy introduced to produce a polynomial approximation
scheme for covering. The general problem tackled in the
paper can be summarised as such: "Given some points on a
plane, what is the minimum number of disc required to cover
all the points?". Deceptively simple. The greedy brute force
approach to this problem would be to simply test every con-
figuration of discs on the points. However, practically, this
breaks down as the number of operations required in order
to enumerate through all possible configurations increases
exponentially as the number of points increases. Hence the
solution being presented in this paper is a way to cut down
the exponential pie into a polynomial one. The shifting strat-
egy uses a divide-and-conquer approach by first dividing
the plane into strips of width D that is bigger than 1. After
that, a certain shifting size [ that is smaller that D is chosen.
For any particular set of strips, a shift would be defined as
the shifting of the boundaries of the strips to the right by [
amount. By definition it would only take D /I shifts for the
original configuration to match the starting configuration
as we are set on an infinite plane. Now withe these strips,
we can apply a greedy algorithm to each of these strips sep-
arately finding the minimum number of unit discs required
to cover all points in the strip. By adding up the output of

all strips we would get the minimum number of unit discs
to cover all points in this particular configuration. We then
shift the strips to the right and repeat. After each shift, we
compare and keep the minimum number of unit discs. By
going through each shift we will get the minimum number
of unit discs required. An important point to note about this
algorithm is that the accuracy of how close it gets to the
actual solution is dependent on how small we make each [
shift to be. With an approximation of (1 + %) as we make
the steps smaller and smaller, the algorithm would become
more and more accurate but conversely it would take more
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Figure 1: A Covering Of A Radius 2/V3 by 3 Discs Of
Radius 1

The second paper built upon the first using the shifting
strategy as a based and showed an an approximation algo-
rithm for a streaming setting on a plane that have have an
upper bound of 3 and way of proving a lower bound of 2.
The approximation algorithm is as follows, divide a plane

2/V3-1
2

up into squares with length § < . For each incoming

point onto the plane, only mark the first point for all points
falling in the same square. At the end, use the points recorded
and the shifting strategy [3] to generate the least number of
unit disc required to cover all recorded point. Because the
generated disc only covered the recorded points and not the
entire square the point sits in, it could have missed some
points because the algorithm only recorded the first point
in any square. To remedy for the situation. Three copy of
the unit disc can be used to expand the coverage to cover all
possible points. Doing so give an upper bound of 3. This is
because it could very well be possible that that the optimal
solution be the exact solution given when the unit disc were
generated by the first recorded points.
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Figure 2: The Lower Bound Construction For UDC In
2D.

Liaw, Liu and Reiss used communication theory to show a
lower bound of 2. By streaming points in the shape of a circle,
queries can be make at 1+¢ distance away from any point.
The algorithm is forced to keep every point because if a par-
ticular point is not kept, the query would return 1 instead of
2. This proof gives us a lower bound of 2, meaning that there
could not exist an algorithm in which the approximation
ratio to the optimal solution is less than 2.

The third paper on the interval selection looks at several
questions. But the focus for this paper is the result of 2-
approximation for a streaming algorithm on a line. Which
gives an upper bound of 2 for a streaming setting on a line.

The two papers that was the backdrop for the second
problem of covering with orthants are Improved Results on
Geometric Hitting Set Problems [5] by Nabil H. Mustafa and
Saurabh Ray and Packing and Covering with Non-Piercing
Regions [6] by Sathish Govindarajan, Rajiv Raman, Saurabh
Ray and Aniket Basu Roy. The general question the two
papers looked at was given a bunch of orthants and points
in 3D, how can we obtain the minimum subset of orthant
that covers all points. The Local Search algorithm presented
works as follows:

(1) We first start off with all given orthants

(2) We then perform local searches and discard any or-
thants whose points are already covered by another
orthant.

(3) Then we perform a search to see if it is possible to
swap out 3 orthants for 2 and do so if it is possible for
all orthants remaining.

(4) The remaining orthants is the optimal minimum subset
of orthants needed to cover all points.

The ambiguity on the local search algorithms is weather
or not it gives the optimal solution. The lack of a proof of
weather or not there exist a sub-linear size balanced separator
can be solved by finding out if there exist a large minor within
the graph form by the Local Search algorithm.
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A view of the problem is to consider the set of points
and orthants as a graph with the points as vertices and that
there is an edge between two points if and only if there is an
orthant that contains only those two points. With this graph,
by showing that no large minor [2] exists, we can show that
the Local Search algorithms gives the optimal solution.

3 STREAMING SETTING

Our attempts on the general case with any number of cover-
ing discs in the solutions was unfruitful but an interesting
insight can be seen when we were playing with the dual prob-
lem where instead of covering streamed points, we wanted
to hit streamed discs with points. No matter what we tried,
there does not seem to be a way to store geometric informa-
tion without storing information on every streamed discs.
For example, when looking at the intersection between discs,
the number of edges of the intersection increases linearly
to the number of discs, saving no memory. It seems to be a
unique property to discs which have only one edges.

Likewise, even when we limit our plane to a 1 + € discs,
where only 3 unit discs are required to cover the entire 1 + ¢,
we are still unable to differentiate between when 1 or 2 or 3
discs are needed without storing all points.

3.1 Thin Annulus: 2-Approximation
Algorithm

A variation on the local problem we looked at is through
the thin annulus variation. The inspiration for this came
from the fact that in the local problem, points falling near
the middle of the 1+€ circle play less of a role in where the
solution would be than compared to points falling near the
edge. In the case where only one unit disc is needed, the
points falling on the edge would inform any algorithm on
where the placement of the unit disc would be. Hence the
annulus variation is as such, given a unit disc within a 1+€
disc with both centered at the same point, the streaming
points only fall within the spaces of the two disc. Would it
be possible to create a 2-approximation algorithm to cover
the points with unit discs ? Note that € needs to be small
enough so that we are able to cover the 1+ ¢ disc with 3 unit
discs.

The statement can be re-framed into two smaller state-
ment: 1) Show that the points cannot be covered by 1 unit
disc or 2) Show that the points can be covered by 2 unit disc.
In this variation, we prove the 2-approximation using the
first statement.

The algorithm to check if 1 unit disc is not enough:

(1) Keep the first two points that fall in the annulus and
designate the left-end point and right-end point from
the perspective of the middle of the circle.



Capstone Project in Computer Science 2, Spring 2021, Abu Dhabi, UAE

Figure 3: Unit Disc Within A Unit 1+¢ Disc

(2) For each incoming point after that, check if it is within
the bound of the left-end and right-end points.

(3) If the incoming points are within the bounds, the
points can be discarded. If the points are outside the
bounds, the points will replace either the left-end or
right-end point depending on which is closer.

(4) If the angle between the left-end point, the mid point
and the right-end point exceeds 180 — § degrees in
any moment of the stream, 1 unit disc would not be
enough to cover the points.

We can check this logic by taking € to be 0 and let the
points stream onto the edge. In this case, 1 unit disc would
be enough to cover all possible points. But the moment we
increase € by a small amount, we are able to cover almost
half of the ring by moving a unit disc centered at the same
point as the unit disc a small amount in any direction. As
this is for a small €, as we increase the €, the § needed for
step 4 of the algorithm would also increase for the check of
one unit disc. That said, when € tends towards 0, this exact
algorithm becomes more and more true.

Using the algorithm we can tell exactly when one disc is
not enough cover all disc in which we can return a solution
of size 3, else we can return a solution of size 2. When the
angle is less than 180 — &, the only two possible solution is 1
or 2 disc. If we return a solution of 2 when the angle is less
than 180 — §, we give an exact approximation if the actual
solution is 2 discs; however, if the actual solution is 1 disc,
we give an approximation of factor 2. Similarly, if the angle
is greater than 180 — § and we return a solution of size 3, we

would give an exact solution if the actual solution is 3 discs
and a approximation of factor 1.5 if the actual solution is 2
discs. Hence, the algorithm give us a 2-approximation in the
worst case.

As this algorithm only keep the information on two points
at anytime, the memory needed is constant.

3.2 Interval Covering: 1.5-Approximation
Algorithm

The question is, given a stream of points, what is the mini-
mum number of unit intervals required to cover all points?
This is the UDC problem but in 1D. Cabello and Pérez-Lantero
showed in their paper a 2-approximation upper bound for
this problem while simultaneously showing a 1.5 lower bound
for the UDC problem in all dimensions. Hence in the case for
1D, an approximation algorithm factor could lie somewhere
between 1.5 and 2. Although we did not give an approxi-
mation algorithm for the general case, we observe that the
greedy algorithm gives us an approximation with a factor of
1.5 when there exist a covering set of size 2.

The greedy algorithm uses the dual problem of the interval
covering problem where instead of streaming points, we
stream in unit intervals with the goal of hitting them with
points. Hence, the greedy algorithm obtain a hitting set of
at most size 3 if there exist a hitting set of size 2.

The greedy algorithm:

(1) Keep the first interval streamed in.

(2) For all incoming intervals after that, check the incom-
ing intervals against the recorded intervals for any
intersections. If there exist intersections, record only
the intersections. Else, record the entire incoming in-
terval.

(3) Place a point in all recorded intervals.

The points placed in all recorded intervals will hit all
streamed intervals. The greedy algorithm keep a record of
at most 3 intervals and hence uses constant memory.

For all possible variation where the hitting set is 2 points,
this algorithm would output 3 intervals or less where if a
point is placed in each interval would cover all intervals that
were streamed in. This gives us a 1.5-approximation.

3.3 Lower Bound for Square Variation

One of the variations we looked at was the square varia-
tion where given streamed points, the goal was to find the
minimum number of unit squares to cover all points.

We give a construction to show a lower bound of 1.5 when
covering with unit squares in a streaming setting via reduc-
tion to the INDEX problem in communication complexity.

We first stream the test points onto a small diagonal line.
In order to test any points, we can stream in two points, one
at 1 + € to the left of the target point and one at 1 + € bellow
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Figure 4: The Lower Bound Construction For The
Square Variation Of UDC In 2D.

the target point. After streaming the two points, we then
query to find the number of unit squares needed to cover
all points. If the target point is remembered, three squares
would be needed, else only two is needed. This gives us a
lower bound of 1.5.

We note that the test points can be streamed onto an
arbitrarily small line which allows the rest of the test points
which are not the target points to fit in two squares if the
target point is not remembered.

3.4 Half-spaces Variation

A variation of the local problem we looked at was that of
streaming half-spaces onto a unit disc. The question is, given
a streaming number of half-spaces onto a unit disc, what
is the minimum number of points to hit all streamed half-
spaces. We first use communication complexity to show a
lower bound of 2 for this problem before giving an algorithm
to obtain a hitting set of size 2 if there exist a hitting set
of size 1 while storing a sub-linear amount of information.
Hence, this is a algorithm for the specific case where the
actual solution consists of only one point.

A half-space is a line with a direction. Each unique line
can have only two direction. A half-space is hit by a point
if there is a point in the direction of the line within the disc.
A test to check if the point hits the line is to move the line
in its direction until the line is out of bound of the disc. If at
any point of time the line touches the point, the line is hit
by the point.
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Figure 5: Lower Bound Construction With 3 Test Half-
Spaces

To show a lower bound, we will reduce from the INDEX
problem in communication complexity. We first stream the
test half-spaces onto a 1 — € disc with all half-spaces tangent
to the 1 — € disc and facing the center point of the disc.
In order to test any half-space, we can stream another half-
space onto the target half-space with an opposite direction. If
the target half-space is remembered, the query would return
that 2 points is needed to cover all half-spaces. If the target
half-space is forgotten, the query would return that 1 point
is needed. This gives us a lower bound of 2. It is important to
note that we need to either disallow placing points directly
on half-spaces or place the query half-space a small distance
behind the target half-space in order for the construction to
hold.

Since the lower bound for this variation is 2, any algorithm
that does not keep the information of all streamed half-spaces
cannot give an approximation more accurate than a factor of
2. Below we give an algorithm that give a 2-approximation
for a hitting set of size 1.

The claim we make is that any situation where the streams
of half-spaces can be hit by one point, there are two diametric
points on the edge of the disc that can hit all half-spaces. We
can find these two diametric points given a point that hits
all half-spaces by first creating a line connecting the point
to the center point. We then extend the line both ways to
intersect with the unit disc. By placing two points where the
line and unit disc intersect, we create two diametric points
that will hit all the half-spaces that are hit by the one point.

The first thing to consider is that there are two types of
half-spaces, half-spaces that hit the center point of the unit
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Figure 6: Target Half-Space(blue), Query Half-
Space(red)
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Figure 7: Center Point(black), Point That Hits Every
Half-Space(blue), Two Diametric Points That Hits Ev-
ery Half-Space(red)

disc and half-spaces that do not hit the center point of the
unit disc.

We can observe that any half-space that hits the center
point of the unit disc will cover at least half the area of
the unit disc. As a result, no matter how we place our two
diametric points along the edge of the disc, the half-space
will hit at least one of the two diametric points. Hence, when

/
\

Figure 8: A Half-Space That Hits the Center Point

dealing with these type of half-spaces, we can ignore them
as we intend to use two diametric point in the final solution.

For half-spaces that do not hit the center point of the
unit disc, we observe that all such half-spaces must share
an intersection arc. If we divide the unit disc into a major
and minor arc using the half-space, in order for a half-space
to not hit the center point, it must be facing the minor arc.
Furthermore, for there to exist a hitting set of size 1, the
minor arcs of all half-spaces that do not hit the center point
must overlap and have an intersection. If there exist two
half-spaces that does not hit the center point and have minor
arcs that do not intersect, there cannot exist a hitting set of
size 1 that will hit both half-spaces.

With that in mind, we present our algorithms for 2-approximation

when the solutions only requires 1 point:

(1) If the half-space streamed in hits the center point, dis-
card the half-space. Else, divide the unit disc into a
minor and major arc using the intersection of the half-
space and the circle as the end-points.

(2) If there are no previously stored arc, repeat from step
1. Else, record the intersection the the minor arc with
previously stored arc as a new arc and keep this new
arc.

(3) Repeat step 1 and 2 until all half-spaces are streamed
in.

(4) If there is an intersection arc, reflect the intersection
arc across the center point and place two points oppos-
ing to each other with one on each arc. Else, arbitrarily
choose two opposing points on the disc edge.
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Note that this 2-approximation algorithm even works
when all streamed half-spaces hits the center point in which
case any two diametric points on the disc edge would hit all
half-spaces.

4 COVERING WITH ORTHANT

An orthant in n-dimensions is the intersection of n mutually
orthogonal half-spaces. In the case for 2D, orthants can be
thought of four different type of L’s that divide a plane into
four different quadrant. For the purpose of the 2D plane
that we are working on, we will name the orthant by the
directions their half-spaces points.

Figure 9: 4 Types Of Orthants For 2D

The connection rule is as such, there are points on the
plane, each with their unique x-coordinate, y-coordinate and
priority, when an orthant is placed, the two points covered by
the orthant with the highest priority will form a connection.
A point is covered by an orthant if its hit by either of its
half-spaces.

For example, given a down right orthant, a point is covered
if it is to the right of the vertical leg of the orthant and below
the horizontal leg of the orthant. To simplify explanations,
any points which are on the legs of an orthant is considered
to be covered by the orthant. An orthant can be defined by
its type and its location which is the coordinates its two
half-spaces meet.

In the case for Figure 10, when the orthant was placed, the
two points with the highest priority was the point with pri-
ority 10 and the point with priority 422, hence a connection
is formed between them.
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Figure 10: Example Use Of An Orthant

Figure 11: Example Use Of Two Orthants

However, if we would like to connect the point with pri-
ority 4.1 to point with priority 4.4, we could place another
orthant of the same type to the right of the points with pri-
ority 10 and 442. In which case, the only points contained
in the new orthant is the points with priority 4.2 and 4.4 re-
spectively. This by defecto makes them the two points with
the largest priority under the new orthant.

Two points are considered connected if there exist a path
between the two points be it directly or through another
point. Given three points in Figure 12, we can connect the
point with priority 1 to the point with priority 3 without
going through the point with priority 2 by creating a new
point (in blue) with priority 1.1, connecting the point with
priority 1 to it with an orthant and connecting it to the point
with priority 3 with another separate orthant.

It is noted that when creating new points, the rule of
forming a connection between two points with the highest
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Figure 13: When Adding A New Point

priority still holds. Hence, if an orthant already connects two
points and a new point is introduced and is contained by
the orthant and have the highest or second highest priority
among the points contained, the connections would change
to include the new point.

Lastly, although there are four types of orthants in 2D, the
construction available to these four orthants are equivalent
to just using just two types, either the down right and up
left orthants or up right and down left orthants. For future
observations, we would work with the down right and up left
orthants for simplicity. What we would like to show is that
given a large number of points, it is not possible to create a

clique, where every point is connected to every other point.

4.1 General Case

We first looked into the properties of a general case where
the points are lined up in a diagonal fashion that stretches
out to infinity where all points are above by a distance of 1
and to the right at a distance of 1 from the previous points
and have increasing priorities.

Figure 14: General Case Without Priorities

The general case can be obtained from any random set
of points and priorities by noting that given n points with
random but unique priorities, there exist a monotonic subset
of size v/n. Hence, the general case is a generalization of an
arbitrary set of points.

4.2 Orthant Steps

A local problem we first tackled was asking if there is a limit
when performing a uniform single connection with one type
of orthant. This means that given the general case, can we
always connect a point to its d™ neighbour on the right for
all points given some d. For the sake of clarity, the orthant
we used points down and right but this will work for any of
the four types. Using the general case as a backdrop, let the
priorities of the points as they ascend the diagonal increase
linearly with the lowest and left most point having a priority
of 1.

The question is then, using one type of orthant is it possi-
ble to connect points with priority n to points with priority
n +d for an arbitrary d.

The solution is trivial when d = 1, as we can connect all
points directly to its neighbour without any intermediary
points as seen in Figure 16.

However, the construction becomes less clear as d in-
creases in size. To the best of our knowledge, there was
not a uniform way of showing such types of constructions
and weather or not there is a limit to d by which after the
construction would not be possible. Hence, we show a gen-
eral purpose construction method for connecting any point
with priority n on the diagonal to another point n +d for any
d>1

The constructions dubbed the ’orthant steps’ is as follows:

(1) Create a new intermediary point at a distance of 2n—1

below the point with priority n with a priority of 1 +
0.1".
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Figure 15: General Case With Priority

Figure 16:d = 1

(2) Connect the point with priority n and this new point
with an orthant placed on the point with priority n.

(3) Create another point at a distance of 2n — 1 to the left
of the point with priority 1 + 0.1" with a priority of
n+d+0.1.

(4) Connect the point with priority n+d + 0.1 to the point
with priority 1 + 0.1" with an orthant placed on the
point with priority n+d + 1

(5) Place an orthant 2n — 1 + d distance above the point
with priority n+ d + 0.1 to connect it to the point with
priority n+d

Using this construction for all points, it is clear that there
is no limit when performing a uniform single connection
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Figure 17: Orthant Steps With d = 2 For The First
Three Points

for all points on the general case. There will never be a
clash of priorities as the first intermediary points will have
descending priorities while the second intermediary points
will have ascending priorities resulting in the intermediary
points having strictly increasing priorities going from left to

right.

4.3 Limits of Single Type Orthant

We show that using a single type of orthant to form the
connections is a equal to a planar graph.

®
~]|®
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Figure 18: Connections With Single Type Orthant
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Let there be four points with priority a, b, c and d. Assume
that there is already an orthant connecting the points with
priority a and c. Also assume that the connections follow the
shape of the orthant, that it first go straight up then to the
right. The only way to for the connection between the points
b and d to cross with the connection between the points a
and c is for the next orthant to be on the same x-coordinate
as the point with priority b and the same y-coordinate as
the point with priority d. This however requires that b > ¢
which prevents the first orthant from connecting the points
with priority a and ¢ as they are no longer the two highest
priorities.

The key idea is that there is no way to create connections
that crosses over each other while being valid when using
only one orthant type.

Therefore, by substituting the points as vertexes and the
connections as edges, using a single type of orthant for all
connections is equal to creating a planar graph. Accordingly,
we know that planar graph cannot be a complete graph [2]
when the number of vertexes is 5 or more. Hence, the limit to
creating cliques with one type of orthant 4 points. It would
not be possible to create cliques with 5 points or more with
one type of orthant.

4.4 Zero Hop

While creating cliques of arbitrary large size is not possible
using one type of orthant, it might be possible with two
types. This subsection and the next aims to show that this
too is not possible.

The question we would like to ask is, would it be possible
to create arbitrarily large cliques without any intermediary
points and with any orthant types. For this local problem,
we only need to gather three points from the general case.

o

o[~]

°

Figure 19: Three Points From The General Case

From Figure 19, we can observe that without the use of an
intermediary point, we are unable to connect the point with
priority 1 and the point with priority 3 with the use of any
type of orthant. Hence, we can conclude that restricting the
connections between all points to zero intermediary points
make creating cliques of size greater than 2 impossible.

4.5 One Hop

Moving from the zero hop, the next logical step would be
to check if it is possible to create arbitrary large size clique
with exactly one intermediary point. Using the general case
as a backdrop, we draw a line through the points, separating
the plane into two.

Figure 20: Split Plane In Half

Then we use Ramsey’s Theorem [2] to restrict the inter-
mediary points to one side of the line for 5 points. Ramsay’s
Theorem tells us that given a large enough clique where two
types of connection is used to form the clique, there will
be a smaller clique where only one type of connection is
used. The two types of connections we assume are when the
intermediary points are on the left and when they are on the
right.

We use this idea to set all intermediary points to one side
of the line for a clique of 5 points. In order to use the results
from before, we use Ramsey’s Theorem once again to create
cliques where all connections are of the same combinations
of two orthants types. We then show that this construction is
impossible by showing that the four combination of orthants
used can be reduced to an impossible state.

Firstly, connecting all 5 points to each other with only one
type of orthant is shown to be impossible from subsection 4.3.
This immediately rules out the two combinations that uses
the same kind of orthants to create the clique for 5 points.
This leaves us with the combinations that uses two different
orthant type.
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Figure 21: Four Combinations Of Two Orthants Types
With One Intermediary Point

Figure 22: Up Left Then Down Right Combina-
tion(left)

With the combination of using up left orthant to connect
the starting point to the intermediary point and using the
down right orthant to connect the intermediary point to the
end point, we can create a scenario where we can show that
this combination is equivalent to a combination that uses
similar types of orthants. In Figure 22, we have a scenario
where the points have priorities a,b and ¢ where a < b < ¢
with the goal of connecting the point with priority a to the
point with priority ¢ using the point with priority p. We can
observe that the intermediary point with priority p must
be placed strictly to the left of the point with priority b. If
placed to the right of the point with priority b, there would
be no way to connect the two points together using a up left
orthantasp > b > aorb > p > aorb > a > pin which case
the orthant will connect the point with priority b with the
point with p or a. Hence, with the point with priority p to
the left of the point with priority b, the only way to connect
the point with priority p to the point with priority c is by
having p > b so that either p > ¢ >borc > p > b.
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If these statements are true, then we can change the down
right orthant to a up left orthant and the construction would
remain the same connecting the point with priority a to the
point with priority ¢ through the intermediary point with
priority p. If we perform this change for all 5 points and their
connections, we get the scenario where all the connections
are of one type which is impossible.

Figure 23: Down Right Then Up Left Midway Con-
struction

Lastly, we show that connecting all 5 points with a down
right orthant followed by a up left orthant is impossible. Let
the scenario be that there are 4 out of the 5 points with prior-
ities a, b, c and d where a < b < ¢ < d. The goal would be to
connect the point with priority a to the point with priority
¢ and the point with priority b to the point with priority
d. We observe that the intermediary point with priority p1
connecting the points with priority a and c needs to be below
the point with priority b and have to have a priority p1 > b.
The point with priority p1 needs to be below the point with
priority b to ensure that the down right orthant does not
include the point with priority b, further more it needs a
priority of p1 > b to allow it to connect to the point with
priority ¢ with a down left orthant. That said, at the same
time, this scenario is the same for the point with priority p2
connecting the points with priority b and d. The point with
priority p2 needs to be lower than the point with priority
¢ and need to have a priority of p2 > c. As p2 > c, there is
no way to use a up left orthant to connect the point with
priority p1 and the point with priority ¢ without including
the point with priority p2 which because p2 > ¢ will either
connect to the point with priority ¢ or the point with priority
p1 rendering this combination to be impossible.

Hence, by showing that all four combinations is impos-
sible, we have shown that restricting the construction to
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exactly one intermediary point makes it impossible to create
cliques of arbitrarily large size.

5 CONCLUSION

For the UDC problem in a streaming setting, most of our
results for the upper bound were in the realm of specific
cases. By restricting the problem to the thin annulus variation
where there are only three possible solution, we were able to
use ideas such as the angle of the points to help differentiate
when 1 disc is not enough. This simple technique allows
us to check using only two points when 1 disc is no longer
enough.

After that, our 1.5-approximation on the interval covering
came from a brute-force method of checking the different
variations of streamed intervals with a hitting set of size 2.
This method for working out how an algorithm would play
out hits its limits as soon as the size of hitting set grows. It
is not a feasible way to confirm approximations for larger
hitting sets.

Right after, out 1.5 lower bound for the square variation
was a textbook application of the communication complexity
to a new problem. The same can be said about the 2 lower
bound for the half-space variation. The only improvement
that could be made would be to increase the specifics of
where the half-spaces and points are streamed in an algo-
rithmic fashion.

Lastly, our algorithm for giving a hitting set of 2 points
when there exist a hitting set of 1 point for the half-space
variation took advantage of the properties of half-spaces
that hit the center point in order to create a hitting set of
2 points that will hit all half-spaces. However, the limiting
factor when trying to generalize would be how it deals with
the half-spaces that does not hit the center point. The amount
of information needed to be stored would increase linearly
with the size of the hitting set which may not be ideal.

Following from the results for the half-space variation,
it would not be too far off to see that by using the same
observations, an algorithm could be made to give a hitting
set of size n + 1 when there exist a hitting set of size n by
keeping information on n intersections of minor arc and
randomly reflecting one of the intersection to ensure all
half-spaces that hit the center points are hit.

For the orthant problem, the orthant steps construction
gave us a uniform way of thinking about using single types
of orthants. However, this insight did not seem to transfer
over when trying to solve the one hop problem. The problem
with how we approached the one hop problem was that
we brute-forces our way through by showing for each of
the combinations that they are an impossible construction.
This approach grows quickly unfeasible as the number of
intermediary points grow. In order to improve our results,

we need to either find a way to recursively use the results
from zero hop and one hop or find a brand new method to
prove that cliques of arbitrarily large size is not possible.
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